期刊文献+

基于椭圆函数谐波平衡法的二元机翼非线性颤振 被引量:5

FLUTTER ANALYSIS OF 2-D AIRFOIL WITH NONLINEARITIES USING ELLIPTIC HARMONIC BALANCE METHOD
原文传递
导出
摘要 针对低阶谐波平衡法精度不高的不足,引入椭圆函数谐波平衡法解决非线性气动弹性问题。基于一阶活塞理论,建立了高速二元机翼的立方非线性颤振方程,采用椭圆函数谐波平衡法、谐波平衡法和Runge-Kutta数值计算方法进行了求解。结果表明:椭圆函数谐波平衡法的计算结果与Runge-Kutta数值计算方法的结果吻合,且与谐波平衡法相比其相对误差更小,可以有效的预测极限环振荡的幅值及其临界点。同时研究了弹性轴位置及重心位置对极限环颤振临界点的影响,随着弹性轴位置不断靠近翼弦中点,极限环振荡临界速度不断增大;而随着重心位置与弹性轴距离的增大,极限环振荡临界速度存在一个极小值点。 The elliptic harmonic balance method is introduced to solve the nonlinear aeroelastic problem,and the flutter of 2-D airfoil with cubic nonlinear is studied.Firstly,the equilibrium equation of the nonlinear airfoil is established based on the first piston theory,and then solved with elliptic harmonic balance method.The validity of the analytical method is confirmed by comparing the Runge-Kutta(RK) solutions for various values of the vibrational amplitude.And the error is smaller than that of the harmonic balance method.A parametric study is carried out to study the influences of the position of elastic axis and the position of the center of gravity on the flutter velocity.The result shows that flutter velocity strongly depends on the position of elastic axis and the position of the center of gravity.The flutter velocity increases with the elastic axis closing to the airfoil midpoint.And with the center of gravity closing to the elastic axis,there is a minimum value of the flutter velocity.
出处 《工程力学》 EI CSCD 北大核心 2013年第4期461-465,共5页 Engineering Mechanics
基金 国防科技大学优秀研究生创新项目(B120107) 湖南省研究生科研创新项目(CX2012B006)
关键词 气动弹性 颤振 椭圆函数谐波平衡法 二元机翼 立方非线性 aeroelastic flutter elliptic harmonic balance method 2-D airfoil cubic nonlinear
  • 相关文献

参考文献13

  • 1Dunn P,Dugundji J.Nonlinear stall and divergenceanalysis of cantilevered graphite/epoxy wing[J].AIAAJournal,1992,30(1):153-162.
  • 2Tang D,Dowell E H.Limit-cycle hysteresis response fora high-aspect-ratio wing model[J].Journal of Aircraft,2002,39(5):885-888.
  • 3Patil M J,Hodges D H,Cesnik C E S.Nonlinearaeroelastic analysis of complete aircraft in subsonic flow[J].Journal of Aircraft,2000,37(5):753-760.
  • 4Patil M J,Hodges D H,Cesnik C E S.Nonlinearaeroelasticity and flight dynamics of high-altitudelong-endurance aircraft[J].Journal of Aircraft,2001,38(1):88-94.
  • 5李道春,向锦武.非线性二元机翼气动弹性近似解析研究[J].航空学报,2007,28(5):1080-1084. 被引量:13
  • 6Lee,Liu L.Airfoil motion in subsonic flow with strongcubic nonlinear restoring forces[J].Journal of Sound andVibration,2005,281:699-717.
  • 7Ghadiri B,Razi M.Limit cycle oscillations ofrectangular cantilever wings containing cubicnonlinearity in an incompressible flow[J].Journal ofFluids and Structures,2007,23:665-680.
  • 8Liu L P,Dowell E H.The secondary bifurcation of anaeroelastic airfoil motion:Effect of high harmonies[J].Nonlinear Dynamics,2004,37:31-49.
  • 9Yuste S B.Construction of approximate analyticalsolutions of a new class of non-linear oscillator equations[J].Journal of Sound and Vibration,1986,110(2):347-350.
  • 10Alex E Z.Application of Jacobian elliptic functions tothe analysis of the steady-state solution of the dampedDuffing equation with driving force of elliptic type[J].Nonlinear Dynamic,2005,42:175-184.

二级参考文献10

  • 1李道春,向锦武.迟滞非线性二元机翼颤振特性分析[J].航空学报,2007,28(3):600-604. 被引量:18
  • 2Lee B H K,Price S J,Wong Y S.Nonlinear aeroelastic analysis of airfoil:bifurcation and chaos[J].Progress in Aerospace Science,1999,35(3):205-334.
  • 3Lee B H K,Liu L,Chung K W.Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces[J].Journal of Sound and Vibration,2005,281:699-717.
  • 4Liu L,Dowell E H.The secondary bifurcation of an aeroelastic airfoil motion:effect of high harmonics[J].Nonlinear Dynamies,2004,37:31-49.
  • 5Yang Z C,Zhao L C.Analysis of limit cycle flutter of an airfoil in incompressible flow[J].Journal of Sound and Vibration,1988,123:1-13.
  • 6Zhao Y H,Hu H Y.Aeroelastic analysis of a non-linear airfoil based on unsteady vortex lattice model[J].Journal of Sound and Vibration,2004,276:491-510.
  • 7Liu L,Wong Y S,Lee B H K.Nonlinear aeroelastic analysis using the point transformation method,part 2:hysteresis model[J].Journal of Sound and Vibration,2002,253:471-483.
  • 8Lee B H K,Tron A.Effects of structural nonlinearities on flutter characteristics of the CF-18 aircraft[J].Journal of Aircraft,1989,26(8):781-786.
  • 9Fung Y C.An introduction to the theory of aeroelasticity[M].New York:Dover Publication Inc,1993.
  • 10赵永辉,胡海岩.具有操纵面间隙非线性二维翼段的气动弹性分析[J].航空学报,2003,24(6):521-525. 被引量:44

共引文献12

同被引文献59

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部