期刊文献+

月球车图像超分辨率重建算法 被引量:4

Moon Rover Image Super-Resolution Reconstruction Algorithm
原文传递
导出
摘要 为了更好地满足嫦娥探月工程二期中月球车导航和探测规划任务对图像数据的要求,提出了一种基于压缩感知的超分辨率图像重建方法,利用经过模糊处理并加入噪声的低分辨率图像重建原始的高分辨率图像,实现了月球车图像的超分辨率重建。算法采用局部Sparse-Land模型,从美国阿波罗计划获取的月面图像、嫦娥二期工程实验中获取的图像以及随机选取的自然图像中提取了大量训练图块,采用K-SVD算法完成了高、低分辨率过完备字典Ah和Al的学习,在对待重建图像进行有效分割的基础上,通过求解优化问题获得待处理低分辨率图块的稀疏表示,并将表示系数用于Ah以生成对应的高分辨率图块。最后,运用最小二乘算法,得到满足重构约束的高分辨率图像。实验结果表明,此算法在视觉效果及PSNR指标上均优于插值方法和Yang的方法。 For moon rover navigation and exploration mission during the 2nd stage of Chang' e project, high-resolution images are necessary. So a moon rover image super-resolution re- construction algorithm via using compressed sensing was presented. The target is to recon- struct an original image from its blurred and down-scaled noisy version. The algorithm as- sumed a local Sparse-Land model on image patches, serving as regularization. The images from Apollo Project, tests in the 2nd stage of Chang^e project and natural image database were used in extracting patches for building two dictionaries. The K-SVD algorithm was used in training the dictionaries. Then the effective segmentation was implemented on low- resolution image. Through solving optimization problem via orthogonal matching pursuit al- gorithm, the sparse representation for each low-resolution image patch with respect to Az was obtained, and the representation coefficients were applied to Ah in order to generate the corresponding high-resolution image patch. At the end of experiment the high-resolution im- age which satisfied the reconstruction constraint was achieved by using least squares algo- rithm. Numerical experiments about moon rover images from tests in the 2nd stage of Chang'e project demonstrated the effectiveness of the proposed algorithm. Moreover, the proposed algorithm outperforms bicubic interpolation based method and the algorithm via Yang in terms of visual quality and the peak signal to noise ratio.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第4期436-439,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41072298)
关键词 压缩感知 超分辨率 过完备字典 稀疏表达 compressed sensing super-resolution over-complete dictionary sparse repre-sentation
  • 相关文献

参考文献8

  • 1刘经南,魏二虎,黄劲松,张小红.月球测绘在月球探测中的应用[J].武汉大学学报(信息科学版),2005,30(2):95-100. 被引量:19
  • 2Thevenaz P, Blu T Unser M. Interpolation Revisi-ted[J]. IEEE Trans Medieal Imaging, 2000,19(7) : 739-758.
  • 3Elad M, Aharon M. Image Denoising via Sparse and Redundant Tepresentations over Learned Dic- tionaries[J]. IEEE Trans on Image Processing, 2006, 15(12): 3 736-3 745.
  • 4Bruckstein A M, Donoho D L, Elad M. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images[J]. SIAM Review, 2009, 51(1): 34-81.
  • 5Elad M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Proeessing[M]. Heidelberg: Springer, 2010.
  • 6! Schultz R R, Stevenson R L. A Bayesian Approach E1 / to Image Expansion for Improved Definition [J].IEEE Transactions on Image Processing, 1994, 3(3) : 233-242.
  • 7Aharon M, Elad M, Bruckstein A M. The K-SVD: An Algorithm for Designing of over Complete Dic- tionaries for Sparse Representation[J]. IEEE Trans on Signal Processing, 2006, 54(11):4 311-4 322.
  • 8Yang J, Wright J, Huang T, et al. Image Super- resolution Via Sparse Representation [J]. IEEE Trans on Image Processing, 2010, 19 (11) : 2 861- 2 873.

二级参考文献11

共引文献18

同被引文献38

  • 1罗继强,姚连兴.月球表面着陆点选取及资源勘探的设想[J].红外与激光工程,2006,35(z1):459-463. 被引量:3
  • 2LI ChunLai1, LIU JianJun1, REN Xin1, MOU LingLi1, ZOU YongLiao1, ZHANG HongBo1, Lü Chang1, LIU JianZhong1, ZUO Wei1, SU Yan1, WEN WeiBin1, BIAN Wei1, ZHAO BaoChang2, YANG JianFeng2, ZOU XiaoDuan1, WANG Min1, XU Chun1, KONG DeQing1, WANG XiaoQian1, WANG Fang1, GENG Liang1, ZHANG ZhouBin1, ZHENG Lei1, ZHU XinYing1, LI JunDuo1 & OUYANG ZiYuan11 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China,2 Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China.The global image of the Moon obtained by the Chang'E-1:Data processing and lunar cartography[J].Science China Earth Sciences,2010,53(8):1091-1102. 被引量:23
  • 3刘经南,魏二虎,黄劲松,张小红.月球测绘在月球探测中的应用[J].武汉大学学报(信息科学版),2005,30(2):95-100. 被引量:19
  • 4陈俊勇,章传银,党亚民.月球航天探测和月球测绘[J].测绘学报,2005,34(3):189-195. 被引量:22
  • 5Huang T S,Tsai R Y. Multi-frame Image Restora- tion and Registration [J]. Advances in Computer vision and Image Processing,1984,(1) :317-339.
  • 6Borman S, Stevenson R L. Super-resolution from Image Sequences:A Review [C]. Midwest Sympo- sium on Circuits and Systems, Notre Dame, IN, 1998.
  • 7Farsiu S, Robinson M D, Elad M, et al. Fast and Robust Multi-frame Super-resolution [J]. IEEE Transactions on Image Processing,2004, 13(10): 1 327-1 344.
  • 8Irani M, Peleg S. Motion Analysis for Image En- hancement : Resolution, Occlusion and Transparency [J]. Journal of Visual Communications and Image Representation, 1993,4(4) .. 324 335.
  • 9Hardie R C, Barnard K J, Armstrong E E, et al. Joint MAP Registration and High-resolution Image Estimation Using a Sequence of Undersampled Ima- ges J]. IEEE Transactions on Image Processing, 1997,12(6)..1 621 1 633.
  • 10Eren P E,Sezan M I,Tekalp A M. Robust,Object- based High-Resolution Image Reconstruction from Low-resolution Video [J]. IEEE Transactions on hnage Processing, 1997,6(10) : 1 446-1 451.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部