期刊文献+

一种基于边缘检测和正负量化的盲水印算法 被引量:2

The Blind Watermarking Algorithms Based on Edge Detection and Quantify the Positive and Negative
下载PDF
导出
摘要 提出了一种基于DCT域边缘检测和正负量化的盲水印算法:先用Arnold置乱方法对水印图像进行加密,并对其进行正负变换,然后用边缘检测算子对载体图像进行边缘提取,再根据阈值的设定选择不同的量化值将水印嵌入,提取水印时不需要原始图像的参与,实现了盲提取.实验结果表明:该算法对于裁剪、压缩、噪声、滤波、缩放等攻击都具有较好的鲁棒性和不可见性. A blind watermarking algorithm based on DCT domain edge detection and positive and negative quantita- tive is proposed. First the algorithm used Arnold scrambling method to encrypt watermark image, and carried on the positive and negative transformation, then used edge detection operator to carrier image edge extraction. Select different quantization value in accordance with the setting of the threshold value to embed watermark. Extract the watermark does not require the algorithm has good the participation of the original image, realizing blind extraction. The experiments show that robustness and invisibility to attacks such as cutting, compression,noise, filtering, scaling
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2013年第1期42-45,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 甘肃省自然科学基金(0803RJZA109) 甘肃省科技攻关课题(2GS035-A052-011)资助项目
关键词 水印 离散余弦变换 正负量化 鲁棒性 watermark discrete cosine transform(DCT) quantization of plus or minus robustness
  • 相关文献

参考文献11

二级参考文献67

共引文献69

同被引文献20

  • 1陈清江,冯金顺,程正兴.关于多重向量值正交小波的存在性[J].江西师范大学学报(自然科学版),2006,30(5):431-435. 被引量:6
  • 2杨家红,许灿辉,王耀南.基于快速曲波变换的图像去噪算法[J].计算机工程与应用,2007,43(6):31-33. 被引量:7
  • 3李华,李杰,江晓武,方勤华.数量矩阵伸缩的高维矩阵值小波包[J].江西师范大学学报(自然科学版),2007,31(4):370-374. 被引量:3
  • 4焦李成.图像多尺度几何分析[M].西安:西安电子科技大学出版社,2008.
  • 5Amira A, Farrell P. An automatic face recognition system based on wavelet transforms [ J ]. IEEE International Sym- posium on Circuits and Systems ,2005,5:6252-6255.
  • 6Cands E J, Donoho D L. Curvelet-A surprisingly effective nonadaptive representation for objects with edges [ C ]. TN : Vanderbilt University Press ,2000 : 105-120.
  • 7Donaho D L, Duncan M R. Digital curvelet transform:strategy, implementation and experiments [ EB/OL ]. [ 20.12-11-16 ]. http://spie, org/x648, html? product_id =381679.
  • 8Cands E J, Demanet L, Donoho D, et al. Fast discrete curvelettransforms [ J ]. Multiscale Modeling & Simula- ti,, 2005,5 ( 3 ) : 861-899.
  • 9Zhang Daoqiang, Zhou Zhihua. (2D) 2 PCA : two-direction- al two-dimensional PCA for efficient face representation and recognition [ J ]. Neurocomputing, 2005,69 ( 1/2/3 ) : 224-231.
  • 10Yang Shouzhi,Tang Yuanyan,Cheng Zhengxing. Construction of compactly supported orthogonal multiwavelet with scale =a[J].{H}Journal of Computational Mathematics,2001,(4):451-460.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部