期刊文献+

一种有效的多元时间序列相似性度量算法分析 被引量:3

The Analysis for an Effective Algorithm of Similarity Measurement of Multivariate Time Series
下载PDF
导出
摘要 为验证Eros距离对MTS数据集相似性度量的有效性,针对不同MTS数据集进行了相似性搜索实验研究.结果表明:相对于其他的传统多元时间序列相似性度量,基于Eros距离的相似性度量方法比传统的方法在查全率-查准率上具有更大的优越性. In order to show the validity of Eros for similarity search on MTS datasets, several experiments were performed on different datasets. The experimental results show that the method of similarity measurement based on Eros distance has superiority in Recall-Precision as compared to the traditional similarity measurements for MTS datasets.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2013年第1期56-59,73,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(51008143)资助项目
关键词 多元时间序列 相似性度量 欧几里德距离 扩展Frobenius范数 multivariate time series similarity measurement Euclidean distance extended Frobenius Norm(Eros)
  • 相关文献

参考文献11

  • 1Yang Kiyong, Shahabi C. An efficient k nearest neighbor search for multivariate time series [ J ]. Information Com- putation,2007,205 ( 1 ) :65-98.
  • 2周大镯,吴晓丽,闫红灿.一种高效的多变量时间序列相似查询算法[J].计算机应用,2008,28(10):2541-2543. 被引量:16
  • 3刘懿,鲍德沛,杨泽红,赵雁南,贾培发,王家钦.新型时间序列相似性度量方法研究[J].计算机应用研究,2007,24(5):112-114. 被引量:24
  • 4陈胜利,李俊奎,刘小东.基于提前终止的加速时间序列弯曲算法[J].计算机应用,2010,30(4):1068-1071. 被引量:10
  • 5曲文龙,张德政,杨炳儒.基于小波和动态时间弯曲的时间序列相似匹配[J].北京科技大学学报,2006,28(4):396-402. 被引量:10
  • 6Keogh E J, Ratanamahatana C A. Exact indexing of dy- namic time warping [ J ]. Knowledge and Information Sys- tems ,2004,7 ( 3 ) : 154-158.
  • 7I Naseimento M, CarvalhoA. Spectral methods for clustering- a survey [ J ]. European Journal of Operational Researeh, 2011,211 (2) :221-231.
  • 8Birant D, Kut A. ST-DBSCAN:an algorithm for clustering spatial-temporal data [ J ]. Data Knowledge Engineering, 2007,60( 1 ) :208-221.
  • 9Chen Lei, Raymond Ng. On the marriage of Lp-norms and edit distance [ EB/OL]. [ 2012-09-07 ]. http ://citeseerx. ist. psu. edu/viewdoc/download? doi = 10. 1. 1. 1. 7443&rep = repl&type = pdf.
  • 10Chen Lei, Tamer M O, Oria V. Robust and fast similarity search for moving object trajectories [ EB/OL]. [ 2012-09- 07 ]. http://citeseerx, ist. psu. edu/viewdoc/download? doi = 10.1.1.94. 8191 &rep = repl &type -- pdf.

二级参考文献40

  • 1Altschul S F, Gish W, Miller W. Basic local alignment search tool [J].Journal of Molecular Biology, 1990,21 (5) :403-410.
  • 2Lipman D J,Pearson W R. Rapid and sensitive protein similarity searches [J].Science, 1985,22 (7) :1435-1441.
  • 3Agrawal R,Srikant R. Mining sequential patterns:generalizations and performance improvements [C].Avignon: Lecture Notes in Computer Science, 1996 : 3-17.
  • 4Han J,Pei J,Yin Y. Mining frequent patterns without candidate generation [C]. Dallas: TX ACM Press ,2000 :1-12.
  • 5Han J, Pei J, Mortazavi-Asl B. Frequent pattern-projected sequential pattern mining [C]. Avignon:Lecture Notes in Computer Science, 2000 : 355 -359.
  • 6Pei jian,Han jiawei. Mining sequential patterns bv pattern-growth:the PrefixSpan approach[J]. IEEE Transactions on Knowledge and Data Engineering,2004,6(10) :1-17.
  • 7KEOGH E,KASETTY S.On the need for time series data mining benchmarks:A survey and empirical demonstration[C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2002:102-111.
  • 8FALOUTSOS C,RANGANATHAN M,MANOLOPOULOS Y.Fast subsequence matching in time-series databases[J].ACM SIGMOD Record,1994,23(2):419-429.
  • 9KEOGH E.Exact indexing of dynamic time warping[C]// Proceedings of 28th International Conference on Very Large Databases Conference.Hong Kong:VLDB Endowment,2002:406-417.
  • 10BERNDT D J,CLIFFORD J.Using dynamic time warping to find patterns in time series[C]// KDD-94:AAAI Workshop on Knowledge Discovery in Databases.Washington,DC:AAAI,1994:229-248.

共引文献53

同被引文献22

  • 1李川川,刘衍珩,田大新.基于序列模式的网络入侵检测系统[J].吉林大学学报(工学版),2007,37(1):121-125. 被引量:7
  • 2赵玉明,张巍,滕少华.数据挖掘技术在异常检测中的应用[J].微型电脑应用,2007,23(5):16-17. 被引量:1
  • 3HanJW,KamberM,PeiJ.数据挖掘概念与技术[M].3版.范明,译.北京:机械工业出版社,2012.
  • 4Ren J M, JSR Jang. Discovering time-constrained sequen- tial patterns for music genre classification [ J ]. Audio, Speech, and Language Processing, 2012, 20 ( 4 ) : 1134- 1144.
  • 5Agrawal R, Sriaknt R, Mining sequential patterns [ EB! OL]. [2012-09.-17 ]. http: JJrakesh. agrawal-family, com/ papers/icde 95seq. pdf.
  • 6Pei Jian, Han Jianwei, Behzad M A, et al. PrefixSpan:mining sequential patterns efficiently by prefix-projected pattern growth [ EB/OL]. [2012-09-21 ]. http://pdf, a- miner, org/OO0/300/860/prefixspan _ mining_ sequential _ patterns_by_prefix_projected_growth, pdf.
  • 7Pei Jian, Han Jianwu. Mining sequential patterns by pat- tern-lowth: the prefixSpan approach [ J ]. IEEE Transac- tions on knowledge and data engineering, 2004,16 ( 11 ) : 1424-1440.
  • 8Lin Cindy Xide, Ji Ming, Danilevsky M, et al. Efficient mining of correlated sequential patterns based on null hy- pothesis [ EB/OL ]. [ 2012-09-21 ]. http ://dl. acm. org/ citation, cfm? id = 2389656. 2389660.
  • 9谢信喜,王士同.适用于区间数据的基于相互距离的相似性传播聚类[J].计算机应用,2008,28(6):1441-1443. 被引量:8
  • 10蒋卓明,周旭,许榕生.P2P网络行为安全监控研究综述[J].计算机科学,2009,36(6):1-4. 被引量:1

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部