期刊文献+

基于WEKA平台的分类预测模型分析 被引量:3

Analysis of Classification-based Prediction Model Using WEKA Interface
下载PDF
导出
摘要 详细分析了C4.5算法和基于蚁群算法的分类算法,进一步给出基于WEKA平台的预处理数据、分类模型J48的使用步骤,并在WEKA平台中嵌入基于蚁群算法的新的分类方法,最后将这两种算法应用于乳腺癌诊断,分类准确率采用10次交叉验证评价。研究结果表明:这两种算法的准确率分别是75.7%和78.5±1.25%。基于蚁群算法的分类算法的分类准确率较高,更适用于乳腺癌的诊断。 Firstly,the C4.5 algorithm and the classification algorithm based on ant colony optimization algorithm were discussed.Then,the steps of the data preprocess and J48 were given,and the classification algorithm based on ant colony optimization algorithm was added into the WEKA interface.Finally,these two algorithms were applied to diagnosis breast cancer,and the classification accuracy was assessed by 10 fold cross validation.The results show that,using these two algorithms,the accuracy rates are 75.7% and 78.5±1.25%,and the classification accuracy of the classification algorithm based on ant colony optimization algorithm is high and applicable for breast cancer diagnosis.
作者 束建华
出处 《蚌埠学院学报》 2013年第2期26-28,共3页 Journal of Bengbu University
关键词 WEKA 分类 预处理 蚁群算法 乳腺癌预测模型 WEKA classification preprocess ant colony optimization(ACO) breast cancer prediction model
  • 相关文献

参考文献4

二级参考文献33

  • 1刘波,潘久辉.基于群体智能的分布式数据挖掘方法[J].计算机工程,2005,31(8):145-147. 被引量:10
  • 2贾修一,于绍越,商琳,陈世福.基于Rough集和蚁群算法的属性约简方法[J].广西师范大学学报(自然科学版),2006,24(4):83-86. 被引量:9
  • 3王光源,何群.一种基于计算机的白血病细胞治疗效果数学模型[J].计算技术与自动化,2007,26(2):119-122. 被引量:2
  • 4KING R D,WISE P H,CLARE A.Confirmation of datamining based predictions of protein function[J].Bioinformat-ics,2004,20(7):1110-1118.
  • 5DE JONG A,VAN HEEL A J,KOK J,et al.Bagel2:min-ing for bacteriocins in genomic data[J].Nucleic Acids Res,2010,38(Web Server issue):W647-W651.
  • 6TIFFIN N,KELSO J F,POWELL A R,et al.Integration oftext-and data-mining using ontologies successfully selects dis-ease gene candidates[J].Nucleic Acids Res,2005,33(5):1544-1552.
  • 7TSE H Y,LI V W,HUI M N,et al.Data mining for chinesemateria medica and pharmacological research[J].J BiomolScreen,2008,13(5):390-395.
  • 8NEWELL D,NIE K,CHEN J H,et al.Selection of diagnos-tic features on breast MRI to differentiate between malignantand benign lesions using computer-aided diagnosis:differencesin lesions presenting as mass and non-mass-like enhancement[J].Eur Radiol,2010,20(4):771-781.
  • 9ZHONG L,LIN J L,LI D Y,et al.Classification of breasttumors on ultrasound images using a hybrid neural network[C]//The 1st International Conference on Bioinformatics andBiomedical Engineering,2007:574-576.
  • 10YUAN Y,GIGER M L,LI H,et al.Multimodality comput-er-aided breast cancer diagnosis with FFDM and DCE-MRI[J].Acad Radiol,2010,17(9):1158-1167.

共引文献5

同被引文献20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部