期刊文献+

基于卷积非负矩阵分解的语音转换方法 被引量:12

Voice Conversion Based on Convolutive Nonnegative Matrix Factorization
下载PDF
导出
摘要 为了在语音转换过程中充分考虑语音的帧间相关性,提出了一种基于卷积非负矩阵分解的语音转换方法。卷积非负矩阵分解得到的时频基可较好地保存语音信号中的个人特征信息及帧间相关性。利用这一特性,在训练阶段,通过卷积非负矩阵分解从训练数据中提取源说话人和目标说话人相匹配的时频基。在转换阶段,通过时频基替换实现对源说话人语音的转换。相对于传统方法,本方法能够更好地保存和转换语音帧间相关性。实验仿真及主、客观评价结果表明,与基于高斯混合模型、状态空间模型的语音转换方法相比,该方法具有更好的转换语音质量和转换相似度。 In order to fully consider the inter-frame correlation in voice conversion, a voice con- version method based on convolutive nonnegative matrix factorization is proposed. The person- al characteristics and inter-frame correlation in voice can be well preserved in the time-frequen-cy bases obtained from convolutive nonnegative matrix factorization. With this feature, during the training phase of voice conversion, the matching time-frequency bases of source and target speakers can be extracted from training data through convolutive nonnegative matrix factoriza-tion. Then in the conversion phase, the voice of source speaker is converted through time-fre-quency bases substitution. Compared with traditional methods, the inter-frame correlation in voice can be better preserved and converted in the proposed method. Experimental results using objective and subjective evaluations show that the proposed method outperforms the methods based on Gaussian mixture model and the state space model in the view of both speech quality and conversion similarity to the target speech.
出处 《数据采集与处理》 CSCD 北大核心 2013年第2期141-148,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61072042)资助项目 解放军理工大学预先研究基金(20110205 20110211)资助项目
关键词 语音转换 卷积非负矩阵分解 时频基 voice conversion convolutive nonnegative matrix factorization time-frequency ba-ses
  • 相关文献

参考文献18

  • 1Stylianou Y. Voice transformation: a survey [C]// IEEE International Conference on Acoustics, Speech and Signal Processing. China: IEEE, 2009: 3585- 3588.
  • 2Abe M, Nakamura S, Shikano K, et al. Voice con version through vector quantization [C]//IEEE In ternational Conference on Acoustics, Speech and Sig nal Processing. Seattle, Washington: IEEE, 1988 655-658.
  • 3Stylianou Y, Cappe O, Moulines E. Continuous probabilistic transform for voice conversion [J].IEEE Transactions on Speech and Audio Processing, 1998, 6(2): 131-142.
  • 4岳振军,邹翔,王浩.基于隐马尔可夫模型和高斯混合模型结合的声音转换方法[J].数据采集与处理,2009,24(3):285-289. 被引量:5
  • 5Yamagishi J, Kobayashi T, Nakano Y, et al. Analy- sis of speaker adaptation algorithms for HMM-based speech synthesis and a constrained SMAPLR adapta- tion algorithm [J]. IEEE Transactions on Audio, Speech and Language Processing, 2009, 17(1): 66- 83.
  • 6Erro D, Moreno A, Bonafonte A. Voice conversion based on weighted frequency warping[J]. IEEE Transactions on Audio, Speech and Language Pro- cessing, 2010, 18(5): 922-931.
  • 7双志伟,张世磊,秦勇.语音转换分析及相似度改进[J].清华大学学报(自然科学版),2009(S1):1408-1412. 被引量:3
  • 8Desai S, Black A W, Yegnanarayana B, et al. Spec- tral mapping using artificial neural networks for voice conversion [J]. IEEE Transactions on Audio, Speech and Language Processing, 2010, 18(5): 954-964.
  • 9Duxans H, Bonafonte A, Kain A, et al. Including dynamic and phonetic information in voice conversion systems [C]//8th International Conference on Spo- ken Language Processing. Jeju Island, Korea: [s. n. ], 2004: 5-8.
  • 10Toda T, Black A W, Tokuda K. Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory [J]. IEEE Transactions on Au- dio, Speech and Language Processing, 2007, 15 (8): 2222-2235.

二级参考文献48

  • 1岳振军,王浩,张雄伟.基于正弦谐波模型和BP神经网络的语音变换算法及实现[J].信号处理,2005,21(z1):208-211. 被引量:7
  • 2左国玉,刘文举,阮晓钢.声音转换技术的研究与进展[J].电子学报,2004,32(7):1165-1172. 被引量:32
  • 3李波,王成友,蔡宣平,张尔扬.LPC与LSF转换算法的比较研究[J].信号处理,2004,20(5):521-524. 被引量:1
  • 4Abe M,Nakamura S,Shikano K,et al. Voice conversion through vector quantization[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. New York:IEEE,1988..655- 658.
  • 5Stylianou Y,Cappe O, Moulines E. Continuos probabilistic transform for voice conversion[J]. IEEE Speech and Audio Processing, 1998, 6(20): 131- 142.
  • 6Lee Ki-Seung. Statistical approach for voice personality transformation [J]. IEEE Transactions on Au- dio, Speech and Language Processing, 2007, 15 (2) :641-651.
  • 7Chu M, Lin H, Jie P X,et al. Voice conversion between female and male in a TD-PSOLA based Chi- nese TTS system[C]//Proceedings of the 5th International Conference on Spoken Language Processing. Singapore:[s. n.],1998,26:113-117.
  • 8宋巍.基于支持向量回归的说话人变换技术[D].南京:南京理工大学通信工程学院,2007.
  • 9ABE M, NAKAMURA S, SHIKANO K, KUWABARA H. Voice conversion through vector quantization[ A ]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing[ C]. New York: IEEE Press, 1988. 655 - 658.
  • 10SHIKANO K, NAKAMURA S, ABE M. Speaker adaptation and voice conversion by codebook mapping [ A ]. Proceedings of IEEE International Symposium on Circuits and Systems [C] .New York: IEEE Press, 1991.594 - 597.

共引文献8

同被引文献117

  • 1双志伟,张世磊,秦勇.语音转换分析及相似度改进[J].清华大学学报(自然科学版),2009(S1):1408-1412. 被引量:3
  • 2简志华,杨震.基于混合线性变换的语声转换算法[J].电子与信息学报,2007,29(7):1700-1702. 被引量:2
  • 3Rowels S, Saul L. Nonlinear dimensionatity reduc- tion by locally linear embedding[J]. Science, 2000,290(5500) .. 2323-2326.
  • 4Tenenbaum J, Silva V, Langford J. A global geo- metric framework for nonlinear dimensionality reduc- tion[J]. Science, 2000,290(5500) :2319-2323.
  • 5He X, Niyogi P. Locality preserving projections [C]//Advances in Neural Information Processing Systems. Whistler, British Columbia, Canada: MIT Press, 2003,16:234-241.
  • 6Belkin M, Niyogi P. Laplacian eigenmaps and spec- tral techniques for embedding and clustering[C]// Advances in Neural Information Processing Systems. Vancouver, British Columbia, Canada.. MIT Press, 2001,14:585-591.
  • 7Guillamet D, Schiele B, Vitria J. Analyzing non-neg- ative matrix faetorization for image classification [C]//Proceedings of 16th International Conference on Pattern Recognition. Quebec, Canada: IEEE Computer Society, 2002,2 : 116-1 19.
  • 8Shahnaz F, Berry M, Pauca V, et at. Document clustering using nonnegative matrix factorization[J]. Information Processing ~ Management, 2006, 42 (2) :373-386.
  • 9Zhang S, Wang W, Ford J, et al. Learning from in- complete ratings using non-negative matrix factoriza- tion[C]//Proceedings of 6th SIAM Conference on Data Mining. Bethesda, MD, USA: SIAM, 2006.
  • 10Bucak S, Gunsel B. Video content representation by incremental non-negative matrix factorization[C]// Proceedings International Conference on Image Pro- cessing. San Autonio, Texas, USA.. IEEE, 2007,2: 113-116.

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部