期刊文献+

基于驱动量补偿的压电型微小机器人运动控制 被引量:2

Motion Control of a Piezo-Driven Miniature Robot Based on Actuating Signal Compensation
下载PDF
导出
摘要 为解决一种左右平行驱动式压电陶瓷微小机器人,由装配误差和压电陶瓷特性的不一致所带来的运动偏差,提出了一种基于驱动量补偿的方法对微小机器人进行运动控制。在详细分析微小机器人的stick-and-slip运动原理的基础上进行实验设计,对左右压电陶瓷驱动器分别输入不同的驱动量,得到多个微小型机器人在横向位置上的位移偏差量。对所得实验数据用最小二乘法进行处理,并拟合出曲线,进而确定微小型机器人的输入驱动量的补偿值。实验表明,加入了补偿输入后,微小型机器人在相同步数下的直线前进运动中,横向的位置偏差减少为原来的6.1%。利用最小二乘法所得到的基于驱动量补偿的运动控制,能有效抑制微小机器人直线运动中横向位置的偏差。 In order to eliminate the motion deviation which is caused by assembling errors of PZT actuators-par- allel-setup miniature robot and inconsistent characteristics of PZT,a method based on actuating signal compension is proposed to control the motion of miniature robot in this paper. Experiments were designed on the basis of detailed a nalysis of stick-and-slip motion principle. By taking several actuating signal input differences of the left and right PZT actuators,corresponding lateral motion variations were obtained. A least squares curve fitting was used to ana- lyze the experimental data and determine the input compensation value of the robot. The experimental results show that the robot's lateral motion deviation has been reduced to 6.1 ~//00 of the original one after joining the input compen sation. The motion control based on least squares method was efficient.
出处 《压电与声光》 CAS CSCD 北大核心 2013年第2期237-240,共4页 Piezoelectrics & Acoustooptics
基金 中国博士后基金资助项目(201000470909) 广东高校国际科技合作基金资助项目(粤教科函[2010]119号) 中央高校基本科研业务费专项基金资助项目(2011ZM0122)
关键词 压电陶瓷 微小机器人 最小二乘法 补偿 piezoelectric ceramic(PZT) miniature robot least squares method compensation
  • 相关文献

参考文献18

二级参考文献114

共引文献109

同被引文献18

  • 1宋宇,郭伟,孙立宁.基于微小型移动机器人的微操作系统[J].机械工程学报,2007,43(2):96-103. 被引量:9
  • 2C.W.hanwoo Moon, Sungho Lee, J.K. Chung. A New Fast Inchworm Type Actuator with the Robust I/Q Heterodyne Interferometer Feedback[J]. Mechatronics, 2006, 16(2): 105-110.
  • 3Ohmi Fuchiwaki, Daigo Misaki, Chisato Kanamori, et al. Development of the Orthogonal Mierorobot for Accurate Microscopic Operations[J]. Journal of Miero-Nano Mechanics. 2008, (4): 85-93.
  • 4J. Brufau, M. Puig-Vidal, J. Lopez-Sanchez, et al. MICRON: Small Autonomous Robot for Cell Manipulation Applications[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, April 2005: 844-849.
  • 5Sylvain Martel, Mark Sherwood, Chad Helm, et al. Three-Legged Wireless Miniature Robots for Mass-scale Operations at the Sub-Atomics Scale [C]. Proceedings of the 2001 IEEE International Conference on Robotics 8 Automation. Seoul, Korea. May 21-26, 2001: 3423-3428.
  • 6Daigo Misaki, Shiro Kayano, Yutaka Wakikaido, et al. Precise Automatic Guiding and Positioning of Micro Robots with a Fine Tool for Microscopic Operations[C]. Proceedings. of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan, September 28 - October 2, 2004: 218-223.
  • 7John J. Craig. Introduction to Robotics: Mechanics and Control (3rd ed.) [M]. NewYork, USA: Pearson Prentice Hall. 2005.
  • 8Farzad Pourboghrat, Mattias P. Karlsson. Adaptive control of dynamic mobile robots with nonholonomic constraints[J]. Computers and Electrical Engineering, 2002, 28(4): 241-253.
  • 9FUCHIWAKI O. Insect-sized holonomic robots for precise, omnidirectional, and flexible microscopic processing: Identification, design, development, and basic experiments [J]. Precision Engineering, 2013, 37(1):88o106.
  • 10LU Zhe, ZHANG Xuping, LEUNG C, et al. Robotic ICSI (intracytoplasmic sperm injection) [J]. IEEE Transactions on Biomedical Engineering, 2011, 58(7): 2102-2108.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部