期刊文献+

Kdv-Burgers方程的两层线性化隐式差分格式 被引量:1

A two-level and linearized implicit difference scheme for the Kdv-Burgers' equation
下载PDF
导出
摘要 应用非线性对流项和反应项的两层线性化技巧,对非线性Kdv-Burgers方程周期边界问题构建了一类具有二阶截断误差的两层线性化隐式差分格式.用数学归纳原理和离散能量法建立了差分格式的唯一可解性、在最大模意义下的收敛性和稳定性.数值计算表明,该格式在时间和空间上都是二阶收敛的. Based on two-level linearized technique for nonlinear convection and reaction term, a twolevel linearized implicit difference scheme with second-order truncation error is presented for the periodic boundary problem of nonlinear Kdv-Burgers equations. The unique solvability, convergence and stability in the maximum norm of difference scheme are obtained by mathematical induction and discrete energy methods. It is shown by numerical experiments that the scheme is second- order convergent in both space and time.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2013年第1期17-21,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11071039) 江苏广播电视大学"十二五"规划课题(12SEW-C-109)
关键词 Kdv—Burgers方程 隐式差分格式 收敛性 稳定性 Kdv-Burgers equation implicit difference scheme convergence stability
  • 相关文献

参考文献4

二级参考文献32

  • 1张晓丹,段雅丽.PC-MG方法解反应-扩散方程组[J].高等学校计算数学学报,2005,27(S1):270-275. 被引量:5
  • 2Morgan J. Boundedness and decay result for reaction-diffusion systems[J]. SIAM J. Math. Anal., 1990, 21: 117-1189.
  • 3Murray J. Mathematical Biology[M]. New York: Springer-Verlag, 1989.
  • 4Taylor M E. Partial differential equations III, Nonlinear equations[M]. New York: Springer-Verlag, 1996.
  • 5Yuan Guang-wei, Shen Long-jun, Zhou Yu-lin. Unconditional stablility of parallel alternating difference schemes for semilinear parabolic systems[J]. Appl. Math. Comput., 2001, 117: 267-283.
  • 6Voss D A and Khaliq A Q M. A linearly implicit predictor-correct method for reaction-diffusion equations[J]. Computers Math. Applic., 1999, 38: 207-216.
  • 7Zhou Yulin. Application of discrete functional analysis to the finite difference method[M]. Beijing: International Academic Publishers, 1990.
  • 8WANG Ming-liang, ZHOU Yu-bin, LI Zhi-bin. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics [J]. Phys Letts A, 1996, 216(1/5) : 67-75.
  • 9WANG Ming-tiang. Exact solutions for a compound KdV-Burgers equation [J]. Phys Letts A, 1996, 213(5/6) : 279-287.
  • 10YAN Chun-tao. A simple transformation for nonlinear waves [J]. Phys Letts A, 1996, 224(1/2) : 77-84.

共引文献10

同被引文献11

  • 1ABDOU M A, ABD EIGAWAD S S. New periodic wave solutions for nonlinear evolution equations with variable coefficients via maping method [J]. Numer Meth- ods Partial Differ Eqs, 2010, 26(6) : 1608-1623.
  • 2GANJAVI B, MOHAMMADI H, GANJI D D, et al. Homotopy perturbation method and variational iteration method for solving Zakharov-Kuznetsov equation [J]. Am J Appl Sci, 2008, 5(7): 811-817.
  • 3YAN Zhilian, LIU Xiqiang. Symmetry and similarity solutions of variable coefficients generalized Zakharov- Kuznetsov equation [J]. Appl Math Comput, 2006, 180(1): 288-294.
  • 4WANG Chuntian. The existence of strong solutions to the 3D Zakharov-Kuznetsov equation in a bounded domain [J]. DiscreteContinDynSyst, 2014, 34(11): 4897-4910.
  • 5BUSTAMANTE E, ISAZA P, MEJIA J. On uniqueness properties of solutions of the Zakharov-Kuznetsov equation [J]. J Funet Anal, 2013, 264(11) : 2529-2549.
  • 6RIBAUD F, VENTO S. Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation [J]. SIAM J Math Anal, 2012, 44(4) : 2289-2304.
  • 7MA Hongcai, YU Yaodong, GE Dongjie. The auxiliary equation method for solving the Zakharov-Kuznetsov (ZK) equation [J]. Comput Appl, 2009, 58(11/12): 2523-2527.
  • 8DARVISHI M T, KHANI F, KHEYBARI S. A numerical solution of the Kdv-Burgers' equation by spectral collocation method and Darvishi's preconditionings [J]. Int J Contemp Math Sci, 2007, 2(22): 1085-1095.
  • 9HAQ S, ISLAM S, UDDIN M. A mesh-free method for the numerical solution of the Kdv-Burgers equation [J]. Appl Math Model, 2009, 33(8): 3442-3449.
  • 10NISHIYAMA H, NOI T, OHARU S. Conservative finite difference schemes for the generalized Zakharow Kuznetsov equations [J]. J Comput Appl Math, 2012, 236(12): 2998-3006.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部