期刊文献+

基于模糊综合评判的遥感图像变化检测方法 被引量:3

Detection method of remote sensing image change based on fuzzy comprehensive evaluation
下载PDF
导出
摘要 在此提出一种基于模糊综合评判的遥感图像变化检测方法。该方法首先对某一时相的遥感图像进行基于改进的模糊C均值聚类的图像分割;其次对图像分割结果进行区域标记和特征提取,根据特征约束条件检测到感兴趣的目标区域,同时将感兴趣的目标区域映射到另一时相的遥感图像;最后综合考虑两时相遥感图像感兴趣目标区域的光谱统计特征和纹理特征,建立模糊综合评判模型对目标区域是否发生变化做出判决。 A detection method based on fuzzy comprehensive evaluation for remote sensing image change is proposed. The segment of remote sensing image in a certain time is carried out with the modified fuzzy C-means algorithm. The region labeling and features extraction of the image segmentation result are conducted. According to the feature restriction condition, the in- teresting target area is detected and mapped into remote image of another time phace. The spectrum statistical and texture fea- tures of the interesting target area from the remote sensing image at two different time phases are considered, so as to establish a fuzzy comprehensive assessment model to detect the changes.
出处 《现代电子技术》 2013年第8期112-116,120,共6页 Modern Electronics Technique
关键词 遥感图像 变化检测 模糊C均值聚类 模糊综合评判 remote sensing image change detection fuzzy C-means clustering fuzzy comprehensive evaluation
  • 相关文献

参考文献9

  • 1李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(S1):7-12. 被引量:230
  • 2HALL Ola, HAY Geoffrey J. A multiscale object-specific ap- proach to digital change detection [J]. International Journal of Ap- plied Earth Observation and Geoinformation, 2003, 4:311-327.
  • 3HUO Chun-lei, ZHOU Zhi-xin, LU Han-qing. Fast ohject-level change detection for VHR images [J]. IEEE Geoseience and Re- mote Sensing Letters, 2010, 7( 1): 118-122.
  • 4NIEMEYER lrmgard, NUSSBAUM Sven, CANTY M J. Auto- mation of change detection procedures for nuclear safeguards- related monitoring purposes [C]// 20051EEE International Geo- scienceandRemote Sensing Symposium. [S.I.]: IEEE, 2005, 3:2133-2136.
  • 5霍春雷,程健,卢汉清,周志鑫.基于多尺度融合的对象级变化检测新方法[J].自动化学报,2008,34(3):251-257. 被引量:32
  • 6NUSSBAUM S, NIEMEYER I, CANTY M J. Feature reeogni- tioo in the :'ontext of automated object-oriented analysis of re- mote sensing data monitoring the iranian nuclear sites [J]. Elec- tro-Optical Remote Sensing, 2005, 5988(5) : 1-9.
  • 7BRUZZONE L, FERNANDEZ D. An adaptive parcel-based technique fi:r unsupervised change detection [J]. International Jou,'nal of Remote Sensing, 2000, 21(4): 817-822.
  • 8WANG Wen-jie , ZHAO Zhong-ming, ZHU Hai-qing. Object- oriented change detection method based on multi-scale and muhi-feature fusion [C]// IEEE Joint Urhan Remote Sensing Event. Shanghai, China: IEEE, 2009: 1-5.
  • 9BOVOL Francesca. A muhilevel parcel- hased approach to change detection in very high resolution multitemporal images [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (1): 33-37.

二级参考文献19

  • 1Singh A. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 1989, 10(6): 989-1003
  • 2Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E. Digital change detection methods in ecosystem monitoring: a review. International Journal on Remote Sensing, 2004, 25(9): 1565-1596
  • 3Lu D, Mausel P, Brondizio E, Moran E. Change detection techniques. International Journal on Remote Sensing, 2004, 25(12): 2365-2401
  • 4Ridd M K, Liu J. A comparison of four algorithms for change detection in an urban environment. Remote Sensing Environment, 1998,63(2): 95-100
  • 5Radke R J, Andra S, Al-Kofahi O, Roysam B. Image change detection algorithms: a systematic survey. IEEE Transactions on Image Processing, 2005, 14(3): 294-307
  • 6Bruzzone L, Prieto D F. Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3): 1171-1182
  • 7Bazi Y, Bruzzone L, Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(4): 874--887
  • 8Bruzzone L, Carlin L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2587-2600
  • 9Carleer A, Debeir O, Wolff E. Comparison of very high spatial resolution satellite image segmentations. In: Proceedings of SPIE Conference on Image and Signal Processing Remote Sensing Ⅸ. Barcelona, Spain: SPIE, 2004. 532-542
  • 10Bovolo F, Bruzzone L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2963-2972

共引文献253

同被引文献44

引证文献3

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部