期刊文献+

ACOUSTIC PROPAGATION IN SHEARED MEAN FLOW USING COMPUTATIONAL AEROACOUSTICS 被引量:1

ACOUSTIC PROPAGATION IN SHEARED MEAN FLOW USING COMPUTATIONAL AEROACOUSTICS
下载PDF
导出
摘要 Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( APE ) .The resulted acoustic pressure is compared for the cases of uniform mean flow and sheared mean flow using both APE and LEE.Numerical results show that interactions between acoustics and mean flow should be properly considered to better understand noise propagation problems , and the suitable option of the different acoustic equations is indicated by the present comparisons.Moreover , the ability of APE to predict acoustic propagation is validated.APE can replace LEE when the 3-D flow-induced noise problem is solved , thus computational cost can decrease. Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations, including linearized Euler equations (LEE) and acoustic perturbation equations (APE). The resulted acoustic pressure is compared for the cases of uniform mean flow and sheared mean flow using both APE and LEE. Numerical results show that interactions between acoustics and mean flow should be properly considered to better understand noise propagation problems, and the suitable option of the different acous- tic equations is indicated by the present comparisons. Moreover, the ability of APE to predict acoustic propagation is validated. APE can replace LEE when the 3-D flowqnduced noise problem is solved, thus computational cost can decrease.
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第1期33-38,共6页 南京航空航天大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(10902050) the China Postdoctoral Science Foundation Funded Project(20100481138) the Aeronautical Science Foundation of China(20101452017)
关键词 computational aeroacoustics acoustic propagation problems sheared mean flow acoustic propagation equations computational aeroacoustics acoustic propagation problems sheared mean flow acoustic propagationequations
  • 相关文献

参考文献11

  • 1Hu F Q, Hussaini M Y, Manthey J L. Low-dissipation and dispersion Runge-Kutta schemes for computational acoustics [J]. Journal of Computational Physics, 1996, 124(1):177-191.
  • 2Hu F Q. A stable perfectly matched layer for linearized Euler equations in unsplit physical variables[J]. Journal of Computational Physics, 2001, 173: 455- 480.
  • 3Tam C K W, Webb J C. Dispersion-relation-preserving schemes for computational acoustics[J]. Journal of Computational Physics, 1993, 107: 262-281.
  • 4Si H Q, Wang T G. Grid-optimized upwind dispersion-relation-preserving scheme on non-uniform Cartesian grids for computational aeroaeoustics [J]. Aerospace Science and Technology, 2008, 12 (8):608-617.
  • 5Si H Q, Wang T G, Chen D. Grid-optimized upwind DRP finite difference scheme on curvilinear grids for computational aeroacoustics [J]. Aerospace Science and Technology, 2011, 15(2) :90-102.
  • 6Zhou Y, Wang Z J. Simulation of CAA benchmark problems using high-order spectral difference method and perfectly matched layers[R]. AIAA 2010-838, 2010.
  • 7Ewert R, Schrode W. Acoustic perturbation equations based on flow decomposition via source filtering [J]. Journal of Computational Physics, 2003, 188: 365-398.
  • 8De Roeck W, Rubio G, Baelmans M, et al. Towards accurate hybrid prediction techniques for cavity flow noise applications[J]. International Journal for Numerical Methods in Fluids, 2009, 61 (12): 1363- 1387.
  • 9Bogey C, Bailly C, Juve D. Noise computation using Lighthill's equation with inclusion of mean flow-acoustics interactions[R]. AIAA 2001-2255, 2001.
  • 10Tam C K W, Dong Z. Wall boundary conditions for high-order finite difference scheme in computational aeroacoustics[R]. AIAA 94-0457, 1994.

同被引文献8

  • 1Lighthill M J. On sound generated aerodynamically.. I. General theory[J]. Proceeding of The Royal Socie- ty of London, 1952,211A(1107).. 564-578.
  • 2Casalino D. An advanced time approach for acoustic analogy predictions[J]. Journal of Sound and Vibra- tion, 2003, 261(4).. 583-612.
  • 3Kierkegaard A, Efraimsson G. A numerical investi- gation of interpolation methods for acoustic analogies [R]. AIAA 2010-3997, 2010.
  • 4Shen W Z, Zhu W J, Sorensen J N. Aero-acoustic computaions for turbulent airfoil flows [J]. AIAA Journal, 2009, 47(6):1518-1527.
  • 5Si Haiqing, Wang Bing, Shi Yan, et al. Aero-acous- tics computations of square cylinder using the lattice Boltzmann method[J]. Applied Mechanics and Mate- rials, 2013, 444/445: 400-405.
  • 6Zhu W J, Shen W Z, Sorensen J N. High-order nu- merical simulations of flow-induced noise[J]. Inter- national Journal for Numerical Methods in Fluids, 2011, 66(1): 17-37.
  • 7司海青,王兵.气动声学计算中一种声扰动方程的改进[J].航空计算技术,2012,42(5):1-3. 被引量:2
  • 8司海青,石岩,王兵,吴晓军.基于格子Boltzmann方法的气动声学计算[J].南京航空航天大学学报,2013,45(5):616-620. 被引量:2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部