期刊文献+

基于SVM的中小企业集合债券融资个体信用风险度量研究 被引量:6

Research on Credit Risk Assessment of SMES Assemble Bond Financier Based on Support Vector Machines
下载PDF
导出
摘要 中小企业集合债券融资个体的信用风险度量面临小样本、非线性、高维数等现实问题,传统的评估方法很难适用。为了弥补传统评估方法的不足,提高信用风险度量的准确性,建立了适用性更强的信用风险评估指标体系,并引入基于统计学习理论的SVM模型对融资个体信用风险进行度量。选取径向基核函数作为支持向量机的核函数,通过数据的转化与缩放、参数的优选,最终获得了分类效果比较好的中小企业集合债券融资个体信用风险度量模型。经实际数据检验,模型的预测准确率为90.77%,具有较强的适用性。 The small and median enterprises assemble bond financing of individual credit risk facing many realistic problems, such as small samples, nonlinear, high dimensions and so on, to which the traditional evaluation method is difficult to apply. In order to make up for the shortcomings of the traditional evaluation methods, and enhance the credit risk measurement accuracy, this paper established a more applicable credit risk evaluation index system, and introduced support vector machine model based on statistical learning theory. Having selected the radial basis kernel function as the kernel function of support vector machine, through the data conversion and scaling, parameter optimization, the authors finally obtained good classification effect of small and median enterprises assemble bond financing of individual credit risk measurement model. After the test of actual data, the forecasting accuracy reached 90.77%, the model has strong applicability.
机构地区 中南大学商学院
出处 《中南大学学报(社会科学版)》 CSSCI 2013年第2期8-11,19,共5页 Journal of Central South University:Social Sciences
基金 教育部人文社科基金项目"中小企业集合债券信用风险度量及控制研究"(10YJA790011)
关键词 信用风险 融资个体 SVM模型 中小企业集合债券 Credit Risk Financier Support Vector Machine SMES assemble bond
  • 相关文献

参考文献8

二级参考文献25

  • 1陈永义,俞小鼎,高学浩,冯汉中.处理非线性分类和回归问题的一种新方法(I)——支持向量机方法简介[J].应用气象学报,2004,15(3):345-354. 被引量:180
  • 2加肇祺.模式识别[M].北京:清华大学出版社,1988..
  • 3MADI-IUKAR A, WILLIAMSON C. A longitudinal study of P2P traffic classification[ C]//Proc of the 14th IEEE Int'l Symposium on Modeling, Analysis, and Simulation. 2006.
  • 4CALLADO A, KAMIENSKI C, SZABO G, et al. A survey on internet traffic identification[ J]. IEEE Communications Surveys & Tutorials,2009,11 ( 3 ) : 37- 52.
  • 5NGUYEN T, ARMITAGE G. A survey of techniques for Intemet traffic using machine learning[ J]. IEEE Communications Surveys & Tutorials, 2008,10 (4) : 56- 76.
  • 6ROUGHAN M, SEN S, SPATSCHECK O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification[ C ]//Proc of ACM/SIGCOMM Internet Measurement Conference (IMC). 2004.
  • 7MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques [ C ]//Proc of ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS). 2005.
  • 8AULD T, MOORE A W, GULL S F. Bayesian neural networks for Intemet traffic classification[ J]. IEEE Trans on Neural Networks, 2007,18( 1 ) :223-239.
  • 9ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning [ C ]// Proc of the 30th IEEE Conference on Local Computer Networks. 2005.
  • 10ERMAN J, ARLITI" M, MAHANTI A. Traffic classification using clustering algorithms [ C ]//Proc of S]GCOMM Workshop ora Mining Network Data. New York :ACM Press, 2006:281-286.

共引文献42

同被引文献85

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部