期刊文献+

互学习神经网络集合的同步

Synchronization of Interacting Neural Networks
原文传递
导出
摘要 互学习的神经网络特别是树状奇偶模型的神经网络因能通过一定量的信息交换达到同步而被广泛地应用在密码学等领域。为了扩展该同步模式的用途,提出一种由多个树状奇偶机组成的神经网络集合的同步方式,分布式同步方式(两两成对同步),并在此基础上讨论分布式同步与向中心学习的同步方式相关性能及比较结果。实验表明,分布式同步在时间复杂度和系统复杂程度上都具有一定的优势,是一种较好的多神经元同步模式,为密钥分发提供了一种新的理论与应用研究方向。 Several scenarios of interacting neural networks especially Tree Parity Machine are widely used in many fields such as cryptography. This kind of neural networks has some good properties such as they can reach a same state by transmitting some information limited. In this paper, the synchronization patterns of Tree Parity Machines are discussed, named learn-neighbor pattern and distributed pattern. Based on the schemes of the two patterns, the advantages of the patterns are investigated, as well as the differences and relations. The experimental resuits show that the distributed pattern is better than the learn-neighbor pattern on the time complexity and the system architecture is simple.
作者 田勇 向涛
出处 《世界科技研究与发展》 CSCD 2013年第2期205-207,227,共4页 World Sci-Tech R&D
基金 中央高校基本科研业务(CDJXS111800372300) 博士后科研业务(20100470817)资助
关键词 神经网络 树状奇偶模型 同步 神经元集合 neural networks tree parity machine synchronization set of neurons
  • 相关文献

参考文献16

  • 1METZLER R, KINZEL W, KANTER I. Interacting neural networks [J]. Physical Review E,2000,62(2) :2 555-2 565.
  • 2KINZEL W, METZLER R, KANTER I. Dynamics of interacting neural networks [ J ]. Physical A : Math. Gen. ,2000,33 ( 14 )': L141-L147.
  • 3HERTZ J, KROGH A, PALMER R G. Introduction to the Theory of Neural Computation [ M ]. Redwood City, Addison-Wesley, 1991 : 1- 45.
  • 4KANTER I, KINZEL W, KANTER E. Secure exchange of information by synchronization of neural networks [ J ]. European Physics Letters, 2002,57 ( 1 ) : 141-147.
  • 5REYES 0 M, ZIMMERMANN K H. Permutation parity machines for neural cryptography[ J]. Physical Review E ,2010,81:066117.
  • 6RUTrOR A, KINZEL W, SHACHAM L, et al. Neural cryptography with feedback [ J ]. Physical Review E,2004,69 (4) :46110.
  • 7RUTYOR A. Neural Synchronization and cryptography [ D ]. Bavaria Wllrzburg : Julius Maximilians University,2007.
  • 8MISLOVATY R, PERCHENOK Y, KANTER I, et al. Secure key-ex- change protocol with an absence of injective functions [ J ]. Physical Review E ,2002,66:066102.
  • 9KINZEL W. Theory of interacting neural networks [ J/OL]. http:// arxiv, org/abs/cond-mat/0204054,2002.
  • 10KINZEL W, KANTER I. Neural cryptography [ J/OL ]. http ://arxiv. org/abs/cond-mat/0208453,2002.

二级参考文献6

  • 1Bleichenbacher D, Chosen Ciphertext Attacks against Protocols Based on the RSA Encryption Standard PKCS #1 //Hrawczyk. Advances in Cryptology-CRYPTO'98. vol. 1462 of Lecture Notes in Computer Science. Berlin.. Springer-Verlag, 1998: 629- 660.
  • 2Manger J. A Chosen ciphertext attack on RSA optimal asymmetric encryption padding(OAEP) as Standardized in PKCS v2.0// Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology. London,UK,2001.
  • 3Lucks S,Schmoigl N,That E I. The Idea and Architecture of a Cyptographic Compiler//WEWoRC 2005 Coference Records. Leuven, Belgium, 2005.
  • 4Millen J, Denker G. CAPSL and MuCAPSL. Journal of Telecommunications and Information Technology, 2002,4 :16-25.
  • 5Li Gong,Syverson P. Fail sto Pprotocols:An approach to designing secure protocols//tL K. Iyer, M. Morganti, Fuchs W. K, and V. Gligor, eds. Dependable Computing for Critical Applications. 5. IEEE Computer Society, 1998:79-100.
  • 6Kocher P. Cryptanalysis of Diffie-Hellman, RSA, DSS, and other Cryptosystems using timing attacks. In Advances in Cryptology, CRYPTO'95 //16TM Annual International Cryptology Conference. California, USA, 1995.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部