期刊文献+

基于Ⅰ导联ECG的心肌梗死特征提取 被引量:2

Feature Extraction of Myocardial Infarction Based on Lead Ⅰ ECG
原文传递
导出
摘要 提出了基于ECG导联Ⅰ的单周期信号的心肌梗死特征提取算法,避免了利用多导联ECG检测心肌梗死带来的不便。首先对导联Ⅰ的ECG信号进行去噪处理;然后,引入小波包算法提取QRS波群、T波的主频带,重构QRS波群、T波的波形并确定ST段的始末位置;最后,运用小波的多分辨分析对ST段进行分解并提取导联Ⅰ信号的心肌梗死的特征波形。实验结果表明,本文算法具有较高识别率,这为ECG导联Ⅰ信号用于心肌梗死的检测与诊断提供了依据。 This paper presents a myocardial infarction feature extraction algorithm, and whereby using single-cycle signal of electrocardiogram (ECG) lead Ⅰ , we solved the problem of inconvenience in using multi-lead ECG. First- ly, the noise is eliminated from the signal of ECG lead Ⅰ , and then, wavelet packet algorithm is introduced to ex- tract the main frequency band of QRS complex and T wave, and reconstruct the QRS complex and T wave shape so as to determine the original and end positions of ST segment. Finally, ST segment is decomposed and the waveform characteristics of myocardial infarction from ECG lead Ⅰ signal is obtained based on the analysis of wavelet's multi- resolution. Simulation results showed that the algorithm achieved a high recognition rate, which provides fundamen- tal principle for the detection of myocardial infarction by using the ECG lead Ⅰ signal.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第2期260-264,共5页 Journal of Biomedical Engineering
关键词 心电图 导联 心肌梗死 小波包 多分辨分析 Electrocardiogram(ECG) Lead Myocardial infarction Wavelet packet Multi-resolution analysis
  • 相关文献

参考文献8

  • 1CHANG P C, HSIEH J C, LIN J J. et al. A hybrid systemwith hidden Markov models and Gaussian mixture models formyocardial infarction classification with 12-lead ECGs[C]//200911th IEEE International Conference on High PerformanceComputing and Communications, Seoul: 20091110-116.
  • 2AL-NAIMA F M, ALI A H, MAHDI S S. Data acquisitionfor myocardial infarction classification based on wavelets andneural networks[C]//2008 5th International Multi-Conferenceon Systems, Signals And Devices. Amman: 2008.1-6.
  • 3JEONG G Y, YU K H. Design of ambulatory ECG monitoringsystem to detect ST pattern change[C]//SICE-ICASE Interna-tional Joint Conference. Busan:2006 j2934-2938.
  • 4GE D F, SUN L H. WEN X J. Discrimination of myocardialinfraction using orthogonal ECG and fuzzy weighted method[C]//2010 4th International Conference on Bioinformatics andBiomedical Engineering, Chengdu>2010: 1-4.
  • 5BANERJEE S, MITRA M. ECG feature extraction and classi-fication of anteroseptal myocardial infarction and normal sub-jects using discrete wavelet transform[C]//2010 InternationalConference on Systems in Medicine and Biology, Kharagpur{2010,55-60.
  • 6CHIANG Y Y, HSU W H. Integrating dynamic Bayesian net-works and constraint-based fuzzy models for myocardial infarc-tion classification with 12-lead ECGs[C]//2010 Conference onPrecision Electromagnetic Measurements, Daejeon } 2010!310-311.
  • 7ELIAS A, LEIJA ALVARADO C, et al. Personal comput-er system for ECG recognition in myocardial infarction diagno-sing based on an artificial neural network[C]//Proceedings ofthe 19th Annual International Conference of the IEEE Engi-neering in Medicine and Biology Society. Chicago: 1997j 1095-1096.
  • 8ANTONINI G. ORLANDI A. Wavelet packet-based EMI sig-nal processing and source identification [J]. IEEE Transactionson Electromagnetic Compatibility, 2001,43 (2) : 140-148.

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部