期刊文献+

基于CBIR技术的眼底图像自动分类检索系统

Content-Based Automatic Retinal Image Recognition and Retrieval System
原文传递
导出
摘要 为实现一个眼底图像自动识别检索的原型系统,本文采用基于内容的图像检索(CBIR)技术提出一种综合考虑眼底图像颜色(灰度)直方图和明、暗区域等局部信息相混合来表示眼底特征的方法,运用核主成分分析(KP-CA)法进一步提取非线性特征和降维。在相似性度量上,提出一种利用支持向量机(SVM)对KPCA加权距离来度量的方法。用该系统随机测试300个样本,检索错误的图片总数为32张,其检索率为89.33%。实验表明该原型系统对眼底图像的识别率极高。 This paper is aimed to fulfill a prototype system used to classify and retrieve retinal image automatically. With the content-based image retrieval (CBIR) technology, a method to represent the retinal characteristics mixing the fundus image color (gray) histogram with bright, dark region features and other local comprehensive information was proposed. The method uses kernel principal component analysis (KPCA) to further extract nonlinear features and dimensionality reduced. It also puts forward a measurement method using support vector machine (SVM) on KPCA weighted distance in similarity measure aspect. Testing 300 samples with this prototype system randomly, we obtained the total image number of wrong retrieved 32, and the retrieval rate 89.33%. It showed that the identifica- tion rate of the system for retinal image was high.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第2期403-408,共6页 Journal of Biomedical Engineering
基金 宁夏回族自治区自然科学基金资助项目(NZ11168) 宁夏回族自治区卫生厅重点科研项目资助(2011077)
关键词 眼底图像(视网膜) 基于内容的图像检索 支持向量机 核主成分分析 Fundus image (retinal) Content-based image retrieval (CBIR) Support vector machine (SVM) Kernel principal component analysis (KPCA)
  • 相关文献

参考文献8

  • 1陈骥,彭承琳.眼底图像的三维重建[J].生物医学工程学杂志,2008,25(1):177-181. 被引量:5
  • 2VAPNIK V N. The nature of statistical learning theory[M].2nd ed. NewYork : Springer-Verlag, 2000 : 17-180.
  • 3潘晨.基于核方法的血细胞图像自动分析与识别[D].西安:西安交通大学,2006.
  • 4DUDARO, HARTPE, STORK DG.模式分类[M].李宏东,姚天翔译.第2版.北京:机械工业出版社,2003.
  • 5VAPNIK V N. An overview of statistical learning theory[J].IEEE Trans Neural Netw, 1999,10(5) : 988-999.
  • 6VAPNIK V N. Statistical learning theory[M]. New York:John Willey &-Sons, 1998.
  • 7杜树新,吴铁军.模式识别中的支持向量机方法[J].浙江大学学报(工学版),2003,37(5):521-527. 被引量:119
  • 8SEBALD D J, BUCKLEW J A. Support vector machines andthe multiple hypothesis test problem[J]. IEEE Trans SignalProcess, 2001, 49(11): 2865-2872.

二级参考文献26

  • 1VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 2VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 3SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 4SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 5CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 6LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.
  • 7SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines:robustness and spare approximation[J]. Neuroeomputing, 2002, 48(1): 85--105.
  • 8ROOBAERT D. DirectSVM: A fast and simple support vector machine perception [A]. Proceedings of IEEE Signal Processing Society Workshop[C]. Sydney, Australia: IEEE, 2000. 356--365.
  • 9DOMENICONI C. GUNOPULOS D. Incremental support vector machine construction [A]. Proceedings of IEEE Int Conf on Data Mining[C]. San Jose, USA:IEEE,2001. 589--592.
  • 10OSUNA E, FREUND R, GIROSI F. An improved training algorithm for support vector machine [A].Proceedings of 1997 IEEE Workshop on Neural Networks for Signal Processing[C]. Amelea Island, FL:IEEE, 1997. 276--285.

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部