期刊文献+

一种基于协方差估计的均值偏移对象跟踪算法 被引量:3

A mean shift object tracking algorithm based on covariance estimation
下载PDF
导出
摘要 针对现有运动目标跟踪算法对目标大小、形状变化的适应能力较差,且不能对目标的旋转进行跟踪的问题,提出一种改进的目标跟踪算法。该算法是均值偏移算法的进一步扩展和延伸,在估计目标位置的同时用协方差矩阵来描述目标形状,结合色彩直方图,处理对象的角度和形状、大小发生变化时的跟踪问题。实验结果表明:改进的算法在不同环境下跟踪目标的鲁棒性很好,极大地提高了跟踪精度,具有很强的实用性。 Considering the problems that the current tracking algorithms always fail in the adaption of object’s changing in size and shape and cannot follow when the object rotating,an improved object tracking algorithm was proposed which was an extension of the mean shift procedure.The new algorithm utilizes a covariance matrix to describe the object’s shape while estimating its position,combines with the color histogram,and processes the tracking problem while the target object keeps changing in angle,size or shape.The experiment shows that algorithm can robustly work in different environment and greatly raise the tracking accuracy.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期1049-1053,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(91120002 41001306)
关键词 均值偏移 协方差矩阵 对象跟踪 颜色直方图 mean shift covariance matrix object tracking color histogram
  • 相关文献

参考文献15

  • 1Comaniciu D, Ramesh V, Meer E Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 2Jarabo-Amores P, Rosa-Zurera M, de la Mata-Moya D, et al. Spatial-range mean-shift filtering and segmentation applied to SAR images[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(2): 584-597.
  • 3NG Heungsun, WU Taipang, TANG Chikeung. Surface- from-gradients without discrete integrability enforcement: A Gaussian kernel approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 2085-2099.
  • 4王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 5胡铟,杨静宇.基于分块颜色直方图的MeanShift跟踪算法[J].系统仿真学报,2009,21(10):2936-2939. 被引量:21
  • 6Bradski G R. Real time face and object tracking as a component of perceptual user interface[C]//Proc IEEE Workshop on Applications of Computer Vision. New Jersey, USA: IEEE Press, 1998: 214-219.
  • 7Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[C]//Proc IEEE Conf on Computer Vision and Pattern Recognition. South Carolina, USA: IEEE Press, 2000, 2: 142-149.
  • 8Ning J, Zhang L, Zhang D, et al. Robust object tracking using joint color-textttre histogram[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(7): 1245-1263.
  • 9Collins R. Mean-shift blob tracking through scale space[C]//Proc IEEE Conf on Computer Vision and Pattern Recognition. Wisconsin, USA: IEEE Press, 2003: 234-240.
  • 10Zivkovic Z, Krose B. An EM-like algorithm for color-histogram- based object tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Washington D C, USA: IEEE Press, 2004: 798-803.

二级参考文献50

共引文献123

同被引文献32

  • 1Pomerleau D.RALPH:Rapidly adapting lateral position handler[A ].Proc.of Intelligent Vehicles′ 95Symposium.,IEEE[C].1995,6-511.
  • 2Hillel A B,Lerner R,Levi D,et al.Recent progress in road and la ne detection:a survey[J].Machine Vision and Applications,2014,25(3):727-745.
  • 3WAMG Jing-yu,DUAN Jian-min.Lane detection algorithm using van ishing point[A].Proc.of Machine Learning and Cybernetics (ICMLC)[C].2013,5-740.
  • 4Donald J B M,Franz J,Shorten R.Application of the hou-gh transfo rm to lane detection in motorway driving scenarios[A].Proc.of the Irish Signals and Systems Conf[C].2001,340-345.
  • 5Lee J W.A machine vision system for lane departure detection[ J].Computer Vision and Image Understanding,2002,86(1):52-78.
  • 6Wang Y,Teoh E,Shen D.Lane detection and tracking using B-snake [J].Image and Vision Computing,2004,22(4):269-280.
  • 7ZHOU Sheng-yan,JIANG Yan-hua.A novel lane dete ction based on geometrical model and Gabor filter[A].Intelligent Vehicles Symp osium,IEEE[C].2010,59-64.
  • 8Mechat N.Lane detection and tracking by monocula r vision system in road vehicle[A].Proc.of 20125th International Congress on Image and Signal Processing,IEEE[C].2012,1276-1282.
  • 9Zhang Y Q,Ding Y,Xiao J S,et al.Visibility enh ancement using an image filtering approach[J].EURASIP Journal on Advances in Signal Processing,2012,(1):1-6.
  • 10Cho J H,Tsogtbaatar E,Kim S H,et al.Improved lane detection system using Hough transform with super-resolution reconstruction algorithm and multi-ROI[A].Proc.of Electron ics,Information and Communications (ICEIC)[C].2014,1-4.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部