期刊文献+

Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic: Constraints from the Geochronology and Geochemistry of Helegangnaren Alkali-feldspar Granite 被引量:36

Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic: Constraints from the Geochronology and Geochemistry of Helegangnaren Alkali-feldspar Granite
下载PDF
导出
摘要 The Helegangnaren feldspar granite exposed in the eastern part of East Kunlun, is characterized by high concentrations of SiO2 and alkaline, low abundances of Fe, Mg and Ca, metaluminous-weak peraluminous. Trace elements analysis shows that the granite is depleted extremely in Ba, Sr and Eu, and rich in some large-ion lithophile elements and high field strength elements. Besides, the granite has high Ga contents, the values of 104(Ga/AI) vary from 2.50 to 2.77, which is mainly greater than the lower limit of A-type granites (2.6), and is higher than the I- and S- type granites' average (2.1 and 2.28, respectively). Rare earth element (REE) is characterized by relatively high fractionations of light REE (LREE) and heavy REE (HREE) (LREE/HREE=9.3-13.60, (La/Yb)N=10.92-18.02), pronounced negative Eu anomalies (JEn=0.08-0.13), and exhibits right- dipping gull pattern. Major elements, rare elements and trace elements features show the granite is ascribed to A-type granite and A2 subtype in tectonic genetic type. They are plotted into post-collision or within-plate area in a variety of tectonic discriminations. Geological and geochemical data comprehensively suggest that the granite is formed in a post-collision extensive tectonic setting. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating yields a weighted mean age of 425 Ma, belonging to Middle Silurian, which is similar to the age of the post- collision geological events in the region. The differences of magmatic rocks in formation age, rocks assemblage and rocks series systematically indicate that the regional tectonic stress regime in the East Kunlun orogenic belt experienced a major transformation from compress to extension in Middle Silurianin, and the Helegangnaren feldspar granite intruded in the early stage of tectonic transformation. The Helegangnaren feldspar granite exposed in the eastern part of East Kunlun, is characterized by high concentrations of SiO2 and alkaline, low abundances of Fe, Mg and Ca, metaluminous-weak peraluminous. Trace elements analysis shows that the granite is depleted extremely in Ba, Sr and Eu, and rich in some large-ion lithophile elements and high field strength elements. Besides, the granite has high Ga contents, the values of 104(Ga/AI) vary from 2.50 to 2.77, which is mainly greater than the lower limit of A-type granites (2.6), and is higher than the I- and S- type granites' average (2.1 and 2.28, respectively). Rare earth element (REE) is characterized by relatively high fractionations of light REE (LREE) and heavy REE (HREE) (LREE/HREE=9.3-13.60, (La/Yb)N=10.92-18.02), pronounced negative Eu anomalies (JEn=0.08-0.13), and exhibits right- dipping gull pattern. Major elements, rare elements and trace elements features show the granite is ascribed to A-type granite and A2 subtype in tectonic genetic type. They are plotted into post-collision or within-plate area in a variety of tectonic discriminations. Geological and geochemical data comprehensively suggest that the granite is formed in a post-collision extensive tectonic setting. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating yields a weighted mean age of 425 Ma, belonging to Middle Silurian, which is similar to the age of the post- collision geological events in the region. The differences of magmatic rocks in formation age, rocks assemblage and rocks series systematically indicate that the regional tectonic stress regime in the East Kunlun orogenic belt experienced a major transformation from compress to extension in Middle Silurianin, and the Helegangnaren feldspar granite intruded in the early stage of tectonic transformation.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第2期333-345,共13页 地质学报(英文版)
基金 financially supported by National Natural Science Foundation of China (Grant Nos. 41172186, 40972136 and 40572121) Special Fund for Basic Scientific Research of Central Colleges, Chang’an University, China (Grant Nos.CHD2011TD020, CHD2009JC070, CHD2009JC053 and CHD2009JC046) the Commonweal Geological Survey,the Aluminum Corporation of China and the Land-Resources Department of Qinghai Province (Grant No.200801)
关键词 A-type granite post orogeny compound orogeny East Kunlun A-type granite, post orogeny, compound orogeny, East Kunlun
  • 相关文献

参考文献32

二级参考文献574

共引文献2271

同被引文献587

引证文献36

二级引证文献329

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部