期刊文献+

利用最小二乘自适应滤波实现绕射波分离 被引量:4

Diffracted wave separation by applying self-adaptive least square filtering method
下载PDF
导出
摘要 尺度目标体的绕射波能量较弱,常被能量较强的反射波淹没,与反射波一起成像难度较大.因而,实现绕射波成像的核心问题之一为绕射波与反射波分离.通常建立反射波模型的方法有Radon变换等域变换类方法,但该类方法在减去反射波能量上存在问题.为更彻底实现压制反射波目的,本文引入自适应滤波方法,该方法较简单的减去法能更好预测反射波能量.实际资料应用效果表明,最小二乘自适应滤波方法能更好突显单炮记录上绕射波特征,得到的叠加剖面中反射波去除更为彻底干净,偏移剖面中小断层、断点、尖灭点等小尺度地质体成像清晰. Weak information carried by small scale geologies is commonly suppressed in strong reflection, which makes simultaneously iraaging of both diffracted wave and reflected wave hard to realize. Thus, how to make separation of these two kinds of wave always are the key of diffracted wave imaging techniques. Radon transformation belonging to one kind of domain transformation methods can be taken to model reflected wave. However, there is a problem existing in its simple subtraction way. In order to crack such problem, we apply self adaptive least square method to better model reflection energies. Field data application indicated that the proposed method can make diffracted wave stand out in shot gather and reflection in stacked profile badly suppressed, thus getting small fault, discontinuities, and pinch-out better imaged.
出处 《地球物理学进展》 CSCD 北大核心 2013年第2期777-784,共8页 Progress in Geophysics
关键词 反射波 绕射波 自适应滤波 最小二乘法 reflected wave, diffracted wave, self-adaptive filtering, least square method
  • 相关文献

参考文献17

  • 1Hubral P. Locating a diffractor below plane layers of constant interval velocity and varying dip[J]. Geophysical Prospecting, 1975, 23(2): 313-322.
  • 2Harlan W S, Claerbout J F, Rocca F. Signal/noise separation and velocity estimation[J]. Geophysics, 1984, 49(11) : 1869- 1880.
  • 3Landa E, Shtivelman V, Gelchinsky B. A method for detection of diffracted waves on common-offset sections[J]. Geophysical Prospecting, 1987, 35(4): 359-373.
  • 4Goldin S, Khaidukov V, Kostim V, et al. Separation of reflected and diffracted objects by means of Gaussian beams decomposition[C]// Bermudez A, Gomez D, Hazard C eds. Proceedings of 5th Internat. Conference on Mathematical and Numerical Aspects of Wave Propagation: SIAM-INRIA, 2000.
  • 5Khaidukov V, Landa E, Moser T J. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution [J]. Geophysics, 2004, 69(6):1478-1490.
  • 6Bansal R, Inhof M G. Diffraction enhancement in prestack seismic data[J]. Geophysics, 2005, 70(3): V73-V79.
  • 7Taner M T, Fomel S, Landa E. Separation and imaging of seismic diffractions using plane-wave decomposition [ C ]. SEG, Expanded Abstracts, 2006: 2401-2404.
  • 8Fomel S, Landa E, Taner M T. Poststack velocity analysis by separation and imaging of seismic diffractions[J]. Geophysics, 2007, 76(6): U89-U94.
  • 9Moser T J, Howard C B. Diffraction imaging in depth[J]. Geophysical Prospecting, 2008, 56(5): 627-641.
  • 10Landa E, Fomel S. Separation, imaging, and velocity analysis of seismic diffractions using migrated dip-angle gathers [C]. SEG, Expanded Abstracts, 2008: 2176-2180.

同被引文献38

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部