期刊文献+

基于多时相光谱和物候特征的陕西省神木县地物遥感分类研究 被引量:3

Land Cover Mapping Based on Multi-temporal Spectral and Phenological Information in Shenmu County,Shaanxi Province
下载PDF
导出
摘要 开展了时间序列Landsat TM/ETM遥感影像定量化处理与相对辐射校正,提取了陕西神木县不同地物光谱和NDVI物候特征,结合时间序列NDVI物候特征和多时相光谱信息,采用了地表覆盖的决策树分类算法,实现了陕西神木县地物的高精度遥感分类,包括水体、沙地、城镇、耕地、林地、草地及灌丛等7类地物,分类总体精度达95.77%,Kappa系数达0.93。研究结果表明,基于多时相光谱和物候特征的决策树分类算法能够有效集成多时相、多光谱信息,从而克服了单时相影像分类的缺陷,实现了地物的分类。论文研究方法和结果能够为三北防护林区域的生态环境监测与评估提供技术支持。 Multi-temporal and multi-spectral information is very important for land cover mapping. In this paper, there were five Landsat TM/ETM images of Shenmu city in shanxi province acquired and processed,and the spectral and NDVI phonologi-cal features of different land-covers were extracted from the Landsat imagery according to ground survey data. According to the spectral and phenological information, a decision tree was used to classify the land-covers, including water, sand, city, cropland, for-est, grassland and brush. The classification result was validated by the ground survey data,with an overall precision of 95.77%, and a Kappa coefficient of 0.93. The result shows that the land cover can be mapped by using the decision tree algorithm, which can integrate the spectral phonological information from the multi-temporal satellite imagery. The presented method can also be applied for the ecological environment monitoring in the Three-North Shelter region.
出处 《遥感信息》 CSCD 2013年第2期76-81,共6页 Remote Sensing Information
基金 国家973课题(2009CB723902) 中国科学院对外合作重点项目(GHJ21123)
关键词 多时相 多光谱 决策树 NDVI 分类 multi-temporal multi-spectral decision tree NDVI classification
  • 相关文献

参考文献8

二级参考文献88

共引文献276

同被引文献29

  • 1李荣平,周广胜,张慧玲.植物物候研究进展[J].应用生态学报,2006,17(3):541-544. 被引量:83
  • 2宋晓宇,刘良云,李存军,王纪华,赵春江.基于单景遥感影像的去云处理研究[J].光学技术,2006,32(2):299-303. 被引量:21
  • 3李述,刘勇.基于多特征的遥感影像土地利用/覆盖分类——以腾格里沙漠东南边缘地区为例[J].遥感技术与应用,2006,21(2):154-158. 被引量:15
  • 4Conese C, Maselli F. Use of Multi-temporal Information to Improve Classification Performance of TM Scenes in Complex Terrain[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1991,46(4) : 187 197.
  • 5Hansen M C,Egorov A,Roy D P,et al. Continuous Fields of Land Cover for the Conterminous United States Using Land- sat Data:First Results from The Web--Enabled Landsat Data (WELD) Project E J 7. Remote Sensing Letters, 2010,2 ( 4 ) :2.79-288.
  • 6Brandt J S, Kuemmerle T, IA Haomin, et al. Using I.anctsat Imagery to Map Forest Change in Southwest China in Re- sponse to the National Logging Ban Eeotourism Development [J]. Remote Sensing of Environment, 2012,191 : 358-369.
  • 7Kennedy R E, Cohen W B, Schroeder T A. Trajectory-based Change Detection for Automated Characterization of Forest Disturbance DynarnicsJ]. Remote Sensing of Environment, 2007,110 (3) : 370-386.
  • 8Huang C Q, Goward S N,Schleeweis K,et al. Dynamics of National Forests Assessed Using the Landsat Record: Case Studies in Eastern United States[J]. Remote Sensing of Envi- ronment,2009 113(7) : 1430-1442.
  • 9Liu L Y, Tang H, Caccetta P, et al. Mapping Afforestation and Deforestation from 1974-2012 Using Landsat Time-series Stacks in Yulin District, a Key Region of the Three-north Shelter Region,ChinaJ]. Environmental Monitoring and As- sessment, 2013,185 : 9949-9965.
  • 10Hansen M C,Potapov P V,Moore R, et al. High-resolution Global Maps of 21t-Century Forest Cover Chang[J]. Sei ence, 2013,342(6160) : 850-853.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部