期刊文献+

误差限的病态总体最小二乘解算 被引量:12

A Regularization Method to Ill-posed Total Least Squares with Error Limits
下载PDF
导出
摘要 大地测量和地球物理数据解算中时常会涉及病态问题的处理。基于客观的观测精度,利用设计矩阵与观测向量的误差限制,一方面降低了病态性对求解造成的波动;另一方面避免引入正常数,从而提高整个解算过程的客观性与可靠性。计算表明,本文提出的方法可以有效地处理病态总体最小二乘问题,并且具有较高的稳定性。 Based on the objective measurement accuracy,we attempt to use the residuals of measurements in both design matrix and observation value to replace the positive constant.A few numerical experiments are carried out to demonstrate the performance and efficiency of the new method.
出处 《测绘学报》 EI CSCD 北大核心 2013年第2期196-202,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41074019) 中美国际合作项目(2010DFB20190)
关键词 病态性 正则化 总体最小二乘 观测精度 误差限度 ill-posed problems regularization total least squares measurement accuracy error limits
  • 相关文献

参考文献5

二级参考文献60

  • 1袁庆,楼立志,陈玮娴.加权总体最小二乘在三维基准转换中的应用[J].测绘学报,2011,40(S1):115-119. 被引量:45
  • 2王振杰,欧吉坤,柳林涛.一种解算病态问题的方法——两步解法[J].武汉大学学报(信息科学版),2005,30(9):821-824. 被引量:33
  • 3Golub H G. Some modified matrix eigenvalue problems[ J]. SIAM Rev. , 1973, 15:318-344.
  • 4Golub H G and Van Loan F C. An analysis of the total least squares problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6) :883 -893.
  • 5Markovsky I, et al. The element-wise weighted total leastsquares problem [ C ]. Comput Statist Data, 2006, Anal50 (1) :181 -209.
  • 6Lemmerling P. Structured total least squares : Analysis, algorithms and applications [ D ]. Katholieke Universiteit, Leuyen, Belgium, 1999.
  • 7Schaffrin B and Felus Y A. On total least-squares adjustment with constraints [ J ]. A windows on the future of Geodesy,IAG - Symp, 2005, Springer, Berlin, t28:417 - 421.
  • 8Sehaffrin B. A note on constrained total least-squares estimation [J]. Linear Algebra Application , 2006, 417( 1 ) :245 - 258.
  • 9Felus Y A and Schaffrin B. Performing similarity transformations using the error-in-variables model[ A]. American society for photogrammetry and remote sensing(ASPRS) annual meeting[ C ]. Baltimore,Maryland, 2003 on CD.
  • 10Schaffrin B and Felus Y A. Muhivariate total least-squares adjustment for empirical affine transformations [ A ]. Xu P (ed). Proceedings of the 6th Hotine - Marussi symposium for theoretical and computational geodesy [ C ]. Berlin: Springer, 2007.

共引文献160

同被引文献135

引证文献12

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部