期刊文献+

基于树核的隐式篇章关系识别 被引量:15

Implicit Discourse Relation Recognition Based on Tree Kernel
下载PDF
导出
摘要 隐式篇章关系识别是篇章结构分析中最具有挑战性的任务之一.传统的方法注重篇章中的概念和意义特征,导致系统的性能不高.系统地探索了篇章中的浅层语义信息和以态度韵为导向的句子级情感等平面特征的有效性,同时提出了一种简单而有效的树核方法,最后采用复合核方法加以集成.在Penn Discourse Treebank(PDTB)2.0语料库上的实验结果表明,引入浅层语义和情感等信息后,准确率得到显著提升. As a critical sub-task in discourse structure analysis, implicit discourse relation recognition (iDRR) is a challenging natural language processing task. Traditional approaches focus on exploring concepts and sense in discourse, which result in poor performance. This paper first systematically explores the efficiency of shallow semantic and attitude prosody-driven sentence-level sentiment information in discourse. Next, the paper proposes a simple but effective tree structure and finally investigates the efficiency of a composite kernel. Evaluation on Penn Discourse Treebank (PDTB) 2.0 shows the importance of shallow semantic and sentiment information across the discourse, and the appropriateness of the composite kernel in iDRR. It also shows that this system significantly outperforms other ones currently in the research field.
出处 《软件学报》 EI CSCD 北大核心 2013年第5期1022-1035,共14页 Journal of Software
基金 国家自然科学基金(60970056 90920004) 国家高技术研究发展计划(863)(2012AA011102) 高等学校博士学科点专项科研基金(20093201110006) 江苏省自然科学基金(BK2011282) 江苏省高校自然基金(11KIJ520003) 江苏省普通高校研究生科研创新计划(CXZZ11_0101)
关键词 篇章 篇章结构分析 隐式篇章关系识别 树核 复合核 discourse discourse structure analysis implicit discourse relation recognition tree kernel composite kernel
  • 相关文献

参考文献32

  • 1Pitier E, Nenkova A. Using syntax to disambiguate explicit discourse connectives in text. In: Proc. of the ACL-IJCNLP 2009. Stroudsburg: Association for Computational Linguistics, 2009. 13-16.
  • 2Wang WT, Su J, Tan CL. Kernel based discourse relation recognition with temporal ordering information. In: Proc. of the ACL 2010. Uppsala: Association for Computational Linguistics, 2010. 710-719.
  • 3Lin ZH, Karl MY, Ng HT. Recognizing implicit discourse relations in the penn discourse treebank. In: Proc. of the EMNLP 2009. Stroudsburg: Association for Computational Linguistics, 2009. 343-351.
  • 4Carlson L, Marcu D, Okurowski ME. Building a discourse-tagged corpus in the framework of rhetorical structure theory. In: Proc. of the SIGDIAL. Stroudsburg: Association for Computational Linguiscs, 2001. 1-10. [doi: 10.3115/1118078.1118083].
  • 5Prasad R, Miltsakaki E, Dinesh N, Lee A, Joshi A, Robaldo L, Webber B. The penn discourse treebank 2.0 annotation manual. Technical Report, IRCS-08-01, Philadelphia: University of Pennsylvania, 2008.1-99.
  • 6Wolf F, Gibson E. Representing discourse coherence: A corpus-based analysis. Journal of Computational Linguistics, 2005,31(2): 249-288. [doi: 10.1162/0891201054223977].
  • 7Zhou ZM, Xu Y, Niu ZY, Lan M, Su J, Tan CL. Predicting of discourse connectives for implicit discourse relation recognition. In: Proc. of the COLING 2010. Beijing: Association for Computational Linguistics, 2010. 1507-1514.
  • 8Pitler E, Louis A, Nenkova A. Automatic sense prediction for implicit discourse relations in text. In: Proc. of the ACL-IJCNLP 2009. Stroudsburg: Association for Computational Linguistics, 2009.683-691.
  • 9Zhou ZM, Lan M, Niu ZY, Xu Y, Su J. The effects of discourse connectives prediction on implicit discourse relation recognition. In: Proc. of the SIGDIAL 2010. Tokyo: Association for Computational Linguistics, 2010. 139-146.
  • 10Hernault H, Bollegala D, Ishizuka M. A semi-supervised approaeh to improve classification of infrequent discourse relations using feature vector extension. In: Proc. of the EMNLP 2010. Massachusetts: Association for Computational Linguistics, 2010. 399-409.

同被引文献113

引证文献15

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部