期刊文献+

小波-RBF短期风电功率预测 被引量:2

Wavelet decomposition and RBF neural network used in short-term wind power prediction
下载PDF
导出
摘要 鉴于风功率预测是风电并网的关键环节之一,风力发电具有波动性、间歇性、随机性特点,首先利用小波变换对历史风功率数据进行分频段分析,然后根据风功率数据高低频的特点分别利用径向基神经网络建立预测模型,最后通过小波重构获得预测信号.通过算例分析,验证了该预测方法具有较高的准确性和实用性. Wind power prediction is one of the important factory in wind power grid. Wind power has the features of being unstable, intermittent and random. This paper firstly analyzes the wind power history data with wavelet transform from high and low-frequency , then builds the prediction mode with RBF neural network according to the characteristics of high and low-frequency data, and finally obtain prediction signal by wavelet reconstruction. The analysis proves that the prediction method has higher accuracy and usefulness.
出处 《安徽工程大学学报》 CAS 2013年第1期65-68,共4页 Journal of Anhui Polytechnic University
关键词 风电功率预测 RBF神经网络 小波变换 wind power prediction RBF neural network wavelet transformation frequency decomposition
  • 相关文献

参考文献5

二级参考文献37

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:184
  • 3吴国旸,肖洋,翁莎莎.风电场短期风速预测探讨[J].吉林电力,2005,33(6):21-24. 被引量:71
  • 4肖永山,王维庆,霍晓萍.基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007,25(2):106-108. 被引量:68
  • 5World Wind Energy Association. Wind turbines generate more than 1% of the global electricity[EB/OL]. (2008-02-21)[2008- 03-20]. http: //www.wwindea.org.
  • 6Landberg L, Watson S J. Short-term prediction of local wind conditions[J]. Bounddary-Layer Meteorology, 1994, 70(1): 171-195.
  • 7Landberg L. Prediktor: an on-line prediction system[C]. Wind Power for the 21 st Century, EUWEC Special Topic Conference, Kassel, 2000.
  • 8Nielsen T S. Madsen H. WPPT: a tool for wind power prediction[C]. EWEA Special Topic Conference, Kassel, 2000.
  • 9Giebel G, Landberg L, Joensen Alfred K, et al. The zephyr-project: the next generation prediction systemiC]. Procedings of Wind Power for the 21st Century, Kassel, Germany, 2000.
  • 10Lange M, Focken U, Heinemann D. Previento-regional wind power prediction with risk control[C]. Proceedings of the World Wind Energy Conference, Berlin, 2002.

共引文献224

同被引文献26

引证文献2

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部