期刊文献+

超临界锅炉过热汽温神经网络内模控制 被引量:6

Neural Network Internal Model Control for Superheated Steam Temperature of Supercritical Boiler Unit
下载PDF
导出
摘要 锅炉过热汽温是燃煤机组运行中的重要参数,过高、过低都会对机组的安全经济运行构成威胁。由于锅炉结构复杂,系统庞大,汽温对象具有变时滞、变参数等特性,喷水减温系统采用的串级PID控制,在大范围变工况下效果往往很不理想,且PID参数整定耗时耗力。为此,该文针对600 MW超临界锅炉过热器的喷水减温系统,研究了过热汽温神经网络(ANN)内模控制方案。基于Matlab建立了汽温系统的ANN正模型和逆模型,并设计出ANN内模实时控制器。仿真表明,与原串级PID控制相比,该方案显著改善了过热汽温的控制品质。 Boiler SST was an important parameter closely related to the safe and economic operation of a coal-fired power plant. Superheated steam temperature either too high or too low will pose a threat on the operation safety and economy. Because the boiler superheater system was relatively complex with large delay,large inertia and higher non- linearity,satisfaetory control effects can often not be obtained with conventional cascade PID control scheme at wide operating range. Retuning of the PID parameters was often a time-consuming and labor-intensive work. For this rea- son,a neural network IMC scheme was studied for the two-stage desuperheating system of a 600 MW supercritieal boiler unit. studying the system with the method based on superheated steam temperature control scheme. The neural network direct models and inverse models of the superheater system are built and trained with MATLAB software. Then neural network model based IMC controllers for the superheated steam temperature were designed,programmed and tested with a full-scope power plant simulator. It was shown that the neural network IMC scheme can significantly improve the superheated steam temperature control quality compared to the original cascade PID control.
出处 《自动化与仪表》 北大核心 2013年第4期10-13,共4页 Automation & Instrumentation
基金 国家自然科学基金项目(61174111) 中央高校基本科研业务费专项资金资助
关键词 超临界锅炉 过热汽温 内模控制 人工神经网络 supercritical boiler superheated steam temperature (SST) internal model control(IMC) artificial neural network ( ANN )
  • 相关文献

参考文献11

  • 1Garcia C E,Morari M. Internal model control:A unifying review and some new results[J].Industrial Engineering Chemistry Process Design and Development,1982,21(2):308-323.
  • 2Garcia C E,Morari M. Internal model control:Design procedure for multivariable systems[J].Industrial Engineering Chemistry Process Design and Development, 1985,24(2) :472-484.
  • 3Zafirion E,Morari M. Internal model control:Robust digital controller synthesis for muhivariable open loop stable or unstable processes[J].Int. J Control,1991,54(3):665-704.
  • 4Eeonomou C G,Morari M,Palsson B O. Internal model control: Extension to nonlinear systems[J].Industrial Engineering Chemistry Process Design and Development,1986,25:403-411.
  • 5金秀章,刘吉臻,牛玉广,田沛.自适应内模控制在主蒸汽温度控制系统中的应用研究[J].中国电机工程学报,2003,23(10):225-229. 被引量:9
  • 6Elman J.Finding structure in time[J].Cognitive Science,1990,14: 179-211.
  • 7Gac X Z,Gao X M,Ovaska S J. A modified Elman neural network model with application to dynamic systems identification [C]//Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Beijing,China,1996:1376-1381.
  • 8Cheng Y C ,Qi W M ,Cai W Y. Dynamic properties of Elman and modified Elman neural networks[C]//Proceedings of the 1st International Conference on Machine Learning and Cybernetics, Beiiing 2002,637-640.
  • 9马宝萍,徐治皋.基于改进的Elman网络的内模控制及其应用[J].热能动力工程,2000,15(4):429-431. 被引量:9
  • 10马良玉,史振兴.基于神经网络逆模型的过热汽温补偿控制研究[J].华北电力大学学报(自然科学版),2011,38(5):70-75. 被引量:5

二级参考文献22

  • 1韩璞,于萍,王东风,黄保海.基于支持向量回归的自适应逆控制方法[J].华北电力大学学报(自然科学版),2006,33(3):31-35. 被引量:5
  • 2刘树棠 韩崇昭.自适应逆控制[M].西安:西安交通大学出版社,2000..
  • 3范永胜,徐治皋,陈来九.基于动态特性机理分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报,1997,17(1):23-28. 被引量:205
  • 4Malinowski A, Zurada J M, Lilly J H. Inverse control of nonlinear systems using neural network observer and inverse mapping approach [ C ]. Proc. of IEEE Interna- tional Conference on Neural Networks, Perth, Western Australia, 1995, vol. 5, pp. 2513-2518.
  • 5Demuth H, Beale M, Hagan M. Neural Network Tool- box^TM 6 User's Guide. The Mathworks, Inc. , 1997.
  • 6Kambhampati C, Craddock R J, Tham M, et al. Inverse model control using recurrent networks [ J]. Mathematics and Computer Simulation, 51, 2000 : 181 - 199.
  • 7孙增圻,智能控制理论与技术,1997年
  • 8金以慧,过程控制,1995年
  • 9韩曾晋,自适应控制,1995年
  • 10周建国 闫长领 卢雁 夏树屏 高世扬.无机化学学报(Wuji Huaxue Xuebao),2003,19(12):1335-1335.

共引文献20

同被引文献55

  • 1桂现才.BP神经网络在MATLAB上的实现与应用[J].湛江师范学院学报,2004,25(3):79-83. 被引量:61
  • 2戴先中,刘国海,张兴华.恒压频比变频调速系统的神经网络逆控制[J].中国电机工程学报,2005,25(7):109-114. 被引量:33
  • 3华志刚,吕剑虹,张铁军.状态变量-预测控制技术在600MW机组再热汽温控制中的研究与应用[J].中国电机工程学报,2005,25(12):103-107. 被引量:47
  • 4田沛,宿喜峰,马平,牛玉广.基于自抗扰技术的主汽温全程控制[J].中国电机工程学报,2006,26(15):73-77. 被引量:15
  • 5WANG Yinsong, HUO Liyan, HE Tongxiang. The nonlinear characteristics diagnosis of the superheated steam temperature control system [C]//2013 8th IEEE Conference on ICIEA. IEEE,2013: 242-246.
  • 6ZHANG Tiejun, FENG Gang, LU Jianhong, et al. Robust constrained fuzzy affine model predictive con- trol with application to a fluidized bed combustion plant[J]. IEEE Transaction on Control System Tech- nology, 2008, 16(5): 1047-1056.
  • 7陈绍炳,于向军.热工过程自动控制原理[M].南京:东南大学出版社,2008:57-61.
  • 8KARIMI B,MENHAJ M B,SABOORI I. Multilayer feed forward neural networks for controlling decen- tralized large-scale non-affine nonlinear systems with guaranteed stability[J]. International Journal of Inno- vative Computing, Information & Control, 2010, 6 (11) : 4825-4841.
  • 9BHASKAR K, SINGH S N. AWNN-Assisted wind power forecasting using feed-forward neural network [J]. IEEE Transactions on Sustainable Energy, 2012, 3(2) : 306-315.
  • 10Lin X J, Chan C W, Neuro-fuzzy generalized predictivecontrol of boiler steam temperature [ J]. IEEE Trans.Energy Conversion, 2007,21 (4) : 83 -88.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部