期刊文献+

CdS量子点沉积的钛基纳米管的制备及其光催化性能研究 被引量:3

Synthesis and photocatalytic activity of CdS quantum dot coupled titanate nanotubes
下载PDF
导出
摘要 采用水热法制备了钛基纳米管,利用双官能团物质2-巯基丙酸为连接剂,将CdS量子点沉积在纳米管表面,研究了2-巯基丙酸浓度对样品的物相、微观结构和光催化活性的影响。利用X射线衍射仪、透射电子显微镜、紫外可见分光度计和光催化反应仪对样品进行了表征。结果表明,CdS量子点成功沉积在纳米管表面,改变2-巯基丙酸浓度可以调节CdS量子点的沉积数量,随着CdS量子点在纳米管表面的沉积,样品不仅在紫外光区有吸收,在可见光区也出现吸收,其吸收边在540nm左右。CdS量子点的沉积提高了样品在可见光下的光催化活性,2-巯基丙酸浓度为0.7mol/L时制备的样品对甲基橙降解的光催化活性最好。 Titanate nanotubes (TNTH)were prepared by hydrothermal method. Then,CdS quantum dots were de posited on the surface of the TNTH by 2-mercaptopropionic acid. The effect of 2-mercaptopropionic acid concentrations on the properties were discussed. The samples were characterized by X-ray diffraction, transmission electron microscope and diffusion reflectance UV-vis spectroscopy. The results showed that CdS quantum dots were successfully deposited on the surface of TNTH and with increasing the concertration of 2-mercaptopropionic acid,the number of CdS quantum dots was increased. The deposited CdS quantum dots broadened the absorption spectrum of the samples. The absorption edge of sampies was at 540nm which had an obvious red shift compared to TNTH. The deposition of CdS quantum clots on the surface of TNTH effectively improved the photocatalytic activity of TNTH, and there was an optimal content when the concentration of 2-mercaptopropionic acid was 0. 7mol/L.
出处 《化工新型材料》 CAS CSCD 北大核心 2013年第4期72-74,共3页 New Chemical Materials
基金 国家自然科学基金(NSFC 50672089 51172218) 教育部新世纪优秀人才计划(NCET-08-0511) 山东省优秀中青年科学家奖励基金(BS2010CL049)
关键词 水热 钛基纳米管 量子点 光催化 CDS hydrothermal,titanate nanotube,quantum dot,photocatalysis,CdS
  • 相关文献

参考文献12

二级参考文献41

  • 1赖跃坤,孙岚,左娟,林昌健.氧化钛纳米管阵列制备及形成机理[J].物理化学学报,2004,20(9):1063-1066. 被引量:82
  • 2Romero M, Blanco J, Sanchez B ,et al. Solar photocatalytic degradation of water and air pollutants:Challenges and perspeclives [ J ]. Solar Energy, 1999,66 ( 2 ) : 169 - 182.
  • 3Paola A D,Marci G,Palmisano L,et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:Characterization and photocatalytic activity for the degradation of 4-Nitrophenol [ J ]. Phys Chem B, 2002, 106 (3) :637 -645.
  • 4Paola A D, Garcia-Lopeza E, Ikedab S, et al. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2 [ J]. Catalysis Today,2002,75 (1 -4) :87 -93.
  • 5Chatterjee D, Mahata A. Visible light induced photodegradatinn of organic pollutants on dye adsorbed TiO2 surface [ J ]. Photochemistry and Photobiology A : Chemistry,2002,153 ( 1 - 3 ) 199 - 204.
  • 6Cho Y M ,Choi W Y. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2 [ J ]. Environ Sci Technol, 2001,35(5) :966 -970.
  • 7Su H L,Xie Y,Gao P,et al. Synthesis of MS/TiO2 (M = Pb,Zn, Cd) nanocomposites through a mild sol-gel process [ J]. Mater Chem ,2001,11:684 - 686.
  • 8Yoon K H, Cho J, Kang D H. Physical and photoelectrochemical properties of the TiO2-ZnO system [ J ]. Materials Research Bulletin, 1999,34 (9) : 1451 - 1461.
  • 9Stengl V, Bakardjievaa S, Nataliya M ,et al. Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis [ J ]. Microporous and Mesoporous Materials ,2008,110 (2 - 3 ) :370 - 378.
  • 10So W W, Kim K J, Moon S J. Photo-production of hydrogen over the CdS/TiO2 nano-composite particulate films treated with TiCl4 [ J]. Hydrog Energy,2004,29:229 - 234.

共引文献65

同被引文献91

  • 1KARKAS M D, JOHNSTON E V, VERHO O, et al. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation [ J ]. Accounts of Chemical Research, 2014, 47(1) : 100-1ll.
  • 2FUJISHIMA A, HONDA K. Electrochemical photocatalysis of water at a semiconductor electrode [ J 1. Nature, 1972, 238: 37-38.
  • 3SANG L X, ZHAO Y X, BURDA C. TiO2 nanoparticles as functional building [ J]. Chemical Reviews, 2014, 114 (19) : 9283-9318.
  • 4JIN Z L, ZHANG X J, LUG X, et al. Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiOE-investigation of different noble metal loading [ J ]. Journal of Molecular Catalysis A: Chemical, 2006, 259 (1/2) : 275-280.
  • 5LI Y X, XIE C F, PENG S Q, et al. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution[ J3- Journal of Molecular Catalysis A: Chemical, 2008, 282(1/2): 117-123.
  • 6PARK J, YI J, TACHIKAWA T, et al. Guanidinium- enhanced production of hydrogen on Nation-coated dye/ TiO2 under visible light[ J]. Phys J Chem Lett, 2010, 1 (9) : 1351-1355.
  • 7LI L, DUAN L L, XU Y H, et al. A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2 [ J ]. Chem Commun, 2010, 46 (39) : 7307 -7309.
  • 8PAN L, ZOU J J, ZHANG X W, et al. Water-mediated promotion of dye sensitization of TiO2 under visible light [J]. JAmChem Soc, 2011, 133(26): 10000-10002.
  • 9KIM M R, MA D L. Quantum-dot-based solar cells:recent advances, strategies, and challenges [ J ]. J Phys Chem Lett, 2015, 6( 1 ) : 85-99.
  • 10MAKAROV N S, MCDANIEL H, FUKE N, et al. Photocharging artifacts in measurements of electron transfer in quantum-dot-sensitized mesoporoustitania films [J]. J Phys Chem Lett, 2014, 5(1): 111-118.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部