期刊文献+

总体经验模式分解视角下的PPI与CPI波动特征及传导关系研究 被引量:9

An Analysis on the Volatility and Transmission Relationship between PPI and CPI
原文传递
导出
摘要 采用总体经验模式分解和计量分析的方法,对国内PPI和CPI的波动特征和传导关系进行深入研究,结果显示二者均由高频分量、低频分量和趋势项构成。高频分量体现的是国内物价中随机波动的信息;低频分量传递的是一定时期内的物价变动信息;趋势项反映的是物价中不轻易变动的信息。对上述结构分量的格兰杰因果检验表明,PPI和CPI之间的传导关系主要受低频分量和趋势项影响:低频分量中只存在PPI到CPI的单向因果关系,而趋势项中存在不对称的传导方式,即在1%的水平上CPI到PPI存在单向因果关系,在5%的水平上二者互为因果关系。 An in-depth research on China's PPI and CPI volatility and the transmission mechanism between them is conducted in this paper based on ensemble empirical mode decomposition as well as relevant quantitative analysis methods. The results show that PPI and CPI are composed of high-frequency, low frequency and trends respectively, in which the high-frequency component reflects the constantly changing information in the domestic prices, the low-frequency component expresses the information of price changes in a certain period while the trend represents relatively constant information of prices. The Granger causality tests show that transmission relationship between PPI and CPI is mainly influenced by the low frequency components and trends, while only one-way causal relationship from PPI to CPI exists between the low frequency components; besides, there is two-way asymmetrical transmission relationship between the trends.
出处 《数量经济技术经济研究》 CSSCI 北大核心 2013年第5期128-139,共12页 Journal of Quantitative & Technological Economics
基金 教育部人文社会科学青年基金(11YJC790260) 陕西省社会科学基金(12D106)项目的资助
关键词 总体经验 模式分解 PPI CPI Ensemble Empirical Mode Decomposition PPI CPI
  • 相关文献

参考文献18

  • 1Blomberg S , Harris E. , 1995, The Commodity-Consumer Price Connection [J], Economic Policy Review, 3, 21-33.
  • 2Cushing Matthew J. , Mary G. Mc Garvey, 1990, Feedback between Wholesale and Consumer Price Inflation. A Reexamination of the Evidence [J], Southern Economic Journal, 56, 1059-1729.
  • 3Guglielmo Maria Caporale, Margarita Katsimi, Nikitas Pittis, 2001, Causality Links between Con- sumer and Producer Prices & Some Empirical Evidence [J], Southern Economic Journal, 1, 712-720.
  • 4Huang N. E. , Shen Z. , Long S. R. , 1998, The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis [J], Process of the Royal Society of Lon- don, A454, 903-995.
  • 5Wu 7-, H. , Huang N. E. , Chen X. Y. , 2009, TheMulti-dirnensional Ensemble Empirical Mode De- composition Method [J], Advances in Adaptive Data Analysis, 1 (3), 339-372.
  • 6Koutroumanidis, TheodorosZafeiriou, EleniArabatzis, Garyfallos, 2009, Asymmetry in Price Trans- mission between the Producer and the Consumer Prices in the Wood Sector and the Role of Imports . The Case of Greece [J], Forest Policy and Economics, 1, 2-4.
  • 7Peel M. C. , Amirthanathan G. E., Pegram G. G. S. , McMahon T. A. , Chiew F. H. N , 2005, Issues with the Application of Empirical Mode Decomposition [R], Modsim 2005 International Congress on Model- ling and Simulation, 1681-1687.
  • 8Tomas Holub, 2000, Prices of Industrial Outputs and Inflationary Developments in the Czech Re- public [J], Eastern European Economics, 38 (3), 6-25.
  • 9Xun Zhang, K.K. Lai, Shou-Yang Wang, 2008, A New Approach for Crude Oil Price Analysis based on Empirical Mode Decomposition [J], Energy Economics, 30, 905-918.
  • 10桂文林,韩兆洲.PPI与CPI关系及我国通货膨胀治理[J].统计研究,2011,28(9):49-56. 被引量:43

二级参考文献80

共引文献280

同被引文献116

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部