期刊文献+

水基碳纳米管悬浮液的淬火沸腾特性

Quenching boiling of aqueous suspensions with carbon nanotubes
下载PDF
导出
摘要 为了研究表面粗糙度及浓度对纳米悬浮液大容器沸腾特性的耦合影响,对粗糙度为Ra0.5和Ra12.5的镀镍铜球在体积分数为0.1%和0.5%的水基碳纳米管悬浮液中的淬火过程进行了实验研究,得到了不同条件下的淬火曲线并通过集总参数模型得到了淬火过程的沸腾曲线。结果表明,悬浮液浓度与表面粗糙度的增加都能加快淬火速率并提高临界热通量。表面粗糙度的增加缩短了核态沸腾阶段的时间,而悬浮液浓度的增加则主要体现了对膜态沸腾阶段的加速作用。在二者的共同影响下,采用表面较为粗糙的淬火物体在浓度较高的纳米悬浮液中进行淬火可以显著地缩短淬火冷却时间,对工程应用具有指导意义。 In order to examine the combined effects of surface roughness and concentration on pool boiling of nanoparticle suspensions,an experimental study on quenching processes of aqueous suspensions with carbon nanotubes(0.1% and 0.5%)was conducted using nickel-plated copper spheres with surface roughness of Ra0.5 and Ra12.5.Quenching curves were acquired directly and boiling curves during the quenching processes were calculated based on a lumped capacitance model.It is shown that increase in both concentration of suspensions and surface roughness expedites quenching speed and enhances critical heat flux.Increase in surface roughness decreases the time duration of nucleate boiling and less film boiling time is primarily due to increased concentration.The combined effects of surface roughness and concentration suggest that quenching objects are utilized with rough surfaces in nanoparticle suspensions of relatively high concentration so as to significantly shorten the quenching time for engineering applications.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第5期1566-1572,共7页 CIESC Journal
基金 国家自然科学基金项目(51206142 51106144) 中国博士后科学基金项目(2012M511362)~~
关键词 碳纳米管悬浮液 大容器沸腾 淬火 临界热通量 表面粗糙度 carbon nanotube suspensions pool boiling quenching critical heat flux surface roughness
  • 相关文献

参考文献16

  • 1Yu W, France D M,Routbort J L,Choi S U S. Review andcomparison of nanofluid thermal conductivity and heattransfer enhancements [J]. Heat Transfer Engineering ,2008, 29 (5): 432-460.
  • 2You S M,Kim I H,Kim K H. Effect of nanoparticles oncritical heat flux of water in pool boiling heat transfer [J].Applied Physics Letter , 2003,83 (16) : 3374-3376.
  • 3Vassallo P, Kumar R, D, Amico S. Pool boiling heattransfer experiments in silica-water nanofluids [ J ].International Journal of Heat and Mass Transfer, 2004,47 (2): 407-411.
  • 4Kim S J,Bang I C,Buongiorno J, Hu L W. Surfacewettability change during pool boiling of nanofluids and itseffect on critical heat flux [J]. International Journal ofHeat and Mass Transfer , 2007, 50 (19/20) : 4105-4116.
  • 5Kim H D, Kim M H. Effect of nanoparticle deposition oncapillary wicking that influences the critical heat flux innanofluids [ J ]. Applied Physics Letters, 2007,91(1): 014104.
  • 6Kim H,Kim M. Experimental study of the characteristicsand mechanism of pool boiling CHF enhancement usingnanofluids [J]. Heat and Mass Transfer,2009,45 (7):991-998.
  • 7Kim H,Buongiorno J,Hu L W, McKrell T. Nanoparticledeposition effects on the minimum heat flux point andquench front speed during quenching in water-based aluminananofluids [J], International Journal of Heat and MassTransfer, 2010, 53 (7/8) : 1542-1553.
  • 8Park S D, Lee S W, Kang S,Bang I C,Kim J H, Shin HS, Lee D W. Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux [ J ].Applied Physics Letter,2010,97 (2) : 023103.
  • 9Kim H. Enhancement of critical heat flux in nucleate boilingof nanofluids: a state-of-art review [ J ]. NanoscaleResearch Letters , 2011, 6 (1): 415.
  • 10Buongiorno J, Hu L W, Apostolakis G,Hannink R, LucasT,Chupin A. A feasibility assessment of the use ofnanofluids to enhance the in-vessel retention capability inlight-water reactors [ J ]. Nuclear Engineering andDesign, 2009, 239 (5): 941-948.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部