期刊文献+

人工肌肉作动器的参数优化设计 被引量:1

OPTIMIZATION DESIGN OF ARTIFICIAL MUSCLE ACTUATOR BY PARAMETERS
原文传递
导出
摘要 由于电活性聚合物材料在电场作用下所表现出的许多独特的力电性能,如大应变、响应快、高能量转换率等特点,使得这种高分子智能材料引起了广泛关注,已被加工成作动器、传感器及俘能器等能量转换器,有望在工程领域发挥巨大作用.论文针对美国人工肌肉公司(Artificial Muscle Inc.)开发的一款电活性聚合物介电薄膜作动器的优化设计开展研究,主要研究了在外加力电载荷作用下,当薄膜发生面外轴对称大变形时,不同初始预拉伸即设计参数对薄膜厚度、拉伸变形、应力及薄膜中电场强度等的影响效应.该薄膜作动器有三个设计参数,结果表明,通过优化设计参数,在设计参数的某一组合下,薄膜的厚度、薄膜中的电场分布将趋于均匀,而薄膜的拉伸变形、应力并未呈现类似的均匀性.本文所提供的研究方法,可为此类作动器的优化设计提供基本的分析模式. Due to their unique mechanical-electro properties in response to an applied electric field, in- eluding large strain, fast response, high energy-converting efficiency etc., the eleetroactive polymers (EAPs) have attracted extensive attentions. The EAPs have been designed into various transducers, e.g. actuators, sensors as well as energy harvesters. In this paper, we investigated the optimization design of a specific actuator presented by the Artificial Muscle Inc. , which is made of a layer of membrane of dielectric elastomer. This membrane actuator has three design parameters. Our emphasis was put on examining the effects of the initial pre-stretches on the membrane thickness, the stretches, the stresses as well as the e- lectric field in the membrane when the membrane undergoes out-of plane axisymmetric large deformation caused by the applied force and the voltage. The results show that the electric field in the membrane tends to be uniform under certain optimizing set of the design parameters while the stretches and the stresses in the membrane do not. The method proposed here can be used to optimize such actuators.
出处 《固体力学学报》 CAS CSCD 北大核心 2013年第2期188-193,共6页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(11072101) 甘肃省高校基本科研业务费项目 兰州理工大学红柳杰出人才培养计划项目资助
关键词 电活性聚合物 人工肌肉 薄膜 换能器 预拉伸 electroactive polymer artificial muscle membrane transducer pre-stretch
  • 相关文献

参考文献19

  • 1Pelrine R E, Kornb striction of polymer luh R D, Joseph J P dielectrics with trodes as a means of actuation [J] compli Sensors Electro- ant elec- and Ac- tuators A-Physical, 1998, 64: 77-85.
  • 2Bar-Cohen Y, Breazeal C. Biologically Inspired Intel- ligent Robotics [C]. Proceedings of the SHE Smart Structures and Materials Symposium. San Diego, CA, 2003: 14-28.
  • 3Zhenyi M, Scheinbeim J L, Lee J W, Newman B A. High field electrostrictive response of polymer [J]. Journal of Polymer Science, Part B: Polymer Phys- ics, 1994, 32: 2721-2731.
  • 4Kornbluh R, Eckerle J, Andeen G. Artificial cle: The Next Generation of Robotic Actuators 4th World Conference of Robotics Research, burgh, PA, 1991.
  • 5Zhang X Q, Lowe C, Wissler M, Jahne B, Kovacs G. Dielectric elastomers in actuator technology [J]. Advanced Engineering Materials, 2005, 7(5): 361-367.
  • 6Pelrine R E, Kornbluh R D, Pei Q, Joseph J P.High speed electrically actuated elastomers with stretch greater than 100% [J]. Science, 2000, 287: 836-839.
  • 7Shankar R, Ghosh T K, Spontak R J. Dielectric elas- tomers as next-generation polymeric actuators [J]. Soft Matter, 2007, 3: 1116-1129.
  • 8Carpi F. Electromechanically active polymers, edito- rial introducing a special issue dedicated to elastomers [J]. Polymer International, 2010, 59: 277-278.
  • 9Brochu P, Pei Q B. Advances in dielectric elastomers for actuators and artificial muscles [J]. Macromolec- ular Rapid Communications, 2010, 31: 10-36.
  • 10Suo Z G, Zhao X H, Greene W H. A nonlinear field theory of deformable dielectrics [J]. Journal of the Mechanics and Physics of Solids, 2008, 56: 467- 486.

二级参考文献33

  • 1Pelrine R E, Kombltth R D, Joseph J E Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation [J]. Sensors and Actuators A-Physical, 1998, 64: 77-85.
  • 2Pelrine R E, Kornbluh R D, Pei Q, Joseph J P. High speed electrically actuated elastomers with stretch greater than 100% [J]. Science, 2000, 287: 836-839.
  • 3Carpi F, Rossi D D, Kombluh R, Pelrine R. Dielectric elastomers as electro-mechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology [C]. UK: Elsevier, 2008.
  • 4Bar-Cohen Y, Breazeal C. Biologically inspired intelligent robotics [C]. Proceedings of the SPIE Smart Structures and Materials Symposium, 2003: 14-20.
  • 5Zhenyi M, $eheinbeim J L, Lee J W, Newman B A. High field electrostrictive response of polymer [J]. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32: 2721 -2731.
  • 6Kombluh R, Eekerle J, Andeen G Artificial muscle: the next generation of robotic actuators [C]. Proceedings of the 4th World Conference of Robotics Research. Pittsburgh: PA, 1991.
  • 7Niino T, Egawa S, Kimura H, Higuchi T. Electrostatic artificial muscle: compact, high-power linear actuators with multiple-layer structures [C]. Proceeding of the IEEE Micro Electro Mechanical Systems Workshop, Oiso Japan, 1994: 130-135.
  • 8Heydt R, Pelrine R, Joseph J, Eckerle J Kombluh R. Acoustical performance of an electrostrictive polymer film loudspeaker [J]. Journal of the Acoustical Society of America, 2000, 107(2): 833-839.
  • 9Eckorle J, Stanford S E, Marlow J P, Schmidt R H, Oh S, Low T P, Shaslri S V. A biologically inspired hexapedal robot using, field-effect electroactive elastomer artificial muscles [C]. Proceedings of SPIE, 2001, 4332: 269-280.
  • 10Wilbur C, Vorus W, Cao Y, Curie S. A lamprey-based undulatory vehicle [C]. Neurotechnology for Biomimetic Robots, Boston, MA: MIT Press, 2002.

共引文献2

同被引文献13

  • 1李刚,冯敏亮,吕新生,张锦权.基于电场活化聚合物的一维伸缩致动器设计[J].机械工程师,2007(8):100-102. 被引量:6
  • 2朱黎辉.电活性介电弹性体膜型材料电致应变特性的研究[D].长春:吉林大学,2011.
  • 3Halloran O, Malley F O, MeHugh P. A review on die-lectrie elastomer actuators, technology, applications, and challenges[J]. Journal of Applied Physics, 2008, 104:071101-1-10.
  • 4Sugiyama Y, Hirai S. Crawling and jumping of de formable soft robot [J] International Journal of Ro- botics Research. 2006,25 : 603-620.
  • 5Krishen K. Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles[J]. Acta Astronautica,2009,64(11-12) :1160-1166.
  • 6Paul B,Pei Q B. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010,31 : 10-36.
  • 7Shankar R, Ghosh T K, Spontak R J. Dielectric elasto- mers as next generation polymeric actuators[J]. Soft Matter, 2007,3 : 1116-1129.
  • 8Wissler M, Mazza E. Modeling of a pre strained circu- lar actuator made of dielectric elastomers[J]. Sensors and Actuators A:Physical,2005,120(1):184 192.
  • 9Sheng J J, Chen H L, Li B. Effect of temperature on the stability of dielectric elastomers [J]. Journal of Physics D Applied Physics,2011,44(36) :406-414.
  • 10Fox J W,Goulbourene N C. On the dynamic electro- mechanical loading of dielectric elastomer membranes [J]. Journal of the Mechanics and Physics of Solids, 2008,56:2669-2686.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部