期刊文献+

致密的5%Al^3+掺杂的SnP_2O_7-SnO_2复合陶瓷在中温燃料电池中的应用(英文) 被引量:2

Dense 5% Al^(3+) -Doped SnP_2O_7-SnO_2 Composite Ceramic for Application in Intermediate Temperature Fuel Cell
下载PDF
导出
摘要 首先制备了未掺杂和5%(摩尔分数)Al3+掺杂SnO2的多孔性基片,然后将基片与85%的H3PO4在600°C下反应,分别得到了致密的未掺杂和5%Al3+掺杂的SnP2O7-SnO2复合陶瓷样品.采用X射线衍射(XRD),扫描电子显微镜(SEM)和X射线能量色散谱(EDS)测试方法对样品进行了表征,采用电化学阻抗谱法(EIS)测试了样品在中温(100-250°C)下,湿润空气和湿润氢气气氛中的电导率.结果表明,在湿润空气和湿润氢气中,5%Al3+掺杂的SnP2O7-SnO2复合陶瓷样品的电导率均高于未掺杂的SnP2O7-SnO2复合陶瓷样品的电导率,且该复合陶瓷样品在湿润空气和湿润氢气中250°C下,电导率分别达到最大值:4.30×10-2和6.25×10-2S·cm-1,高于至今报道的SnP2O7-SnO2基复合陶瓷及SnP2O7基陶瓷在类似条件下的电导率.以5%Al3+掺杂的SnP2O7-SnO2复合陶瓷样品(厚度:1.45mm)为电解质,多孔性铂为电极组装成的氢气/空气燃料电池具有良好的中温电池性能,175、200、250°C的最大输出功率密度分别为52.0、61.9、82.3mW·cm-2.良好的中温电池性能与该复合陶瓷电解质较高的电导率和致密度及该燃料电池较低的界面极化电阻有关. Dense non-doped and 5% (molar fraction) Al^3+-doped SnP2OT-SnO2 composite ceramics were prepared by reacting non-doped and 5% AI3+-doped SnO2 porous substrates, respectively, with 85% H3PO4 solution at 600 ℃. The composite ceramics were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Their conductivities in the intermediate temperature range of 100-250 ℃ in wet air and wet H2 atmospheres were measured by electrochemical impedance spectroscopy (EIS). The conductivities of the 5% AI3+-doped SnP2O7-SnO2 composite ceramic were higher than the conductivities of the non-doped SnP2OT-SnO2 composite ceramic and reached 4.30×10^-2 S.cm-1 in wet air and 6.25×10^-2 S.cm-1 in wet H2 at 250 ℃. These values are higher than those of the SnP2O7-SnO2 based composite ceramic and SnP2O7--based ceramics under similar conditions. An H2/air fuel cell containing the 5% AP*-doped SnP2O7-SnO2 composite ceramic as an electrolyte (thickness: 1.45 mm) and porous platinum as electrodes exhibited satisfactory cell performance. The maximum output power densities of this cell were 52.0 mW. cm-2 at 175 ℃, 61.9 roW. cm-2 at 200 ℃ and 82.3 mW-cm-2 at 250 ℃. Such good performance is related to the high conductivity and sufficientdensity of the composite ceramic electrolyte as well as the low interracial polarization resistance of the cell.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第5期953-958,共6页 Acta Physico-Chimica Sinica
基金 supported by the National Natural Science Foundation of China(20771079) Priority Academic Program Development of Jiangsu Higher Education Institutions,China~~
关键词 焦磷酸锡 复合陶瓷 电解质 电导率 燃料电池 SnP2O7 Composite ceramic Electrolyte Conductivity Fuel cell
  • 相关文献

参考文献3

二级参考文献24

  • 1马志芳,梁广川,梁金生.碱土金属氧化物掺杂氧化铈基电解质材料中的晶格缺陷[J].物理化学学报,2005,21(6):663-667. 被引量:13
  • 2Khandale,A.P.; Bhoga,S.S.J.Power Sources 2010,195,7974.
  • 3Sun,L.P.; Li,Q.; Zhao,H.; Huo,L.H.; Grenier,J.C.J.Power Sources 2008,183,43.
  • 4Ardigò,M.R.; Perron,A.; Combemale,L.; Heintz,O.; Caboche,G.; Chevalier,S.J.Power Sources 2011,196,2037.
  • 5Tu,H.Y.; Stimming,U.J.Power Sources 2004,127,284.
  • 6Chiba,R.; Yoshimura,F.; Sakurai,Y.Solid State Ionics 1999,124,281.
  • 7Liu,Y.; Rauch,W.; Zha,S.W.; Liu,M.L.Solid State Ionics 2004,166,261.
  • 8Santillán,M.J.; Caneiro,A.; Quaranta,N.; Boccaccini,A.R.J.Eur.Ceram.Soc.2009,29,1125.
  • 9Kim,Y.M.; Kim-Lohsoontorn,P.; Baek,S.W.; Bae,J.Int.J.Hydrog.Energy 2011,36,3138.
  • 10Amow,G.; Whitfield,P.S.; Davidson,I.J.; Hammond,R.P.; Munnings,C.N.; Skinner,S.J.Ceram.Int.2004,30,1635.

共引文献13

同被引文献52

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部