期刊文献+

改进模糊自回归模型在预测网络接通率中的应用 被引量:1

Improved fuzzy auto-regressive model for connection rate prediction
下载PDF
导出
摘要 针对通信网络中性能指标预测的需要,提出了基于改进的模糊自回归模型的接通率预测方法,研究了拟合度门限自适应的模糊自回归模型。将中值滤波应用于模糊自回归模型的数据预处理中,在此基础上,针对部分应用拟合度门限不明确的特点,将拟合度门限计算式加入预测模型中,实现模型拟合度门限的自适应。仿真实验表明:基于Fuzzy AR模型的预测方法可以用于对接通率的预测,预测结果拟合度较高。 Specific to the need of performance prediction in communication networks, a connection rate prediction method based on fuzzy Auto-Regressive (AR) model was proposed and improved, and the fuzzy AR model based on adaptive fitting degree threshold was studied. The median filtering method was applied to pre-process the data of fuzzy AR model. On this basis, for the uncertain thresholds of some applications, the fitting degree threshold formula was added to the prediction model to make it adaptive. The simulation results show that the predistion method based on fuzzy AR model can be used to predict the connection rate with a higher fitting degree.
出处 《计算机应用》 CSCD 北大核心 2013年第5期1222-1224,1229,共4页 journal of Computer Applications
基金 吉林省重点科技发展项目(20120436 20100309) 吉林省发改委高新技术项目(20106421)
关键词 模糊预测 自适应拟合度 模糊自回归模型 接通率预测 数据预处理 fuzzy prediction adaptive fitting degree fuzzy Auto-Regressive (AR) model connection rate prediction data preprocessing
  • 相关文献

参考文献16

  • 1ROJAS I, VALENZUELA O, ROJAS F, et al. Soft-computing tech- niques and ARMA model for time series prediction [ J]. Neurocom- puting, 2008, 71(4/5/6) : 519 -537.
  • 2KAYACAN E, ULUTAS B, KAYNAK O. Grey system theory-based models in time series prediction [ J]. Expert Systems with Applica- tions, 2010, 37(2) : 1784 - 1789.
  • 3张晗,王霞.基于小波分解的网络流量时间序列建模与预测[J].计算机应用研究,2012,29(8):3134-3136. 被引量:14
  • 4吴今培.模糊诊断理论及应用[M].北京:科学出版社,1995.
  • 5吴今培.模糊时间序列建模及应用[J].系统工程,2002,20(4):72-76. 被引量:17
  • 6SONG Q, CHISSOM B S. Fuzzy time series and its models[ J]. Fuzzy Sets and Systems, 1993, 54(3) :269 -277.
  • 7BOX G E P, JENKINS G M. Time series analysis forecasting and control[M]. 2nd ed. San Francisco, CA: Holden-Day, 1976.
  • 8KASABOV N K, SONG Q. DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction [ J]. IEEE Transactions on Fuzzy Systems, 2002, 10(2) : 144 - 154.
  • 9HATHAWAY R, BEZDEK J C. Switching regression model and fuzzy clustering[ J]. IEEE Transactions on Fuzzy Systems, 1993, 1(3):195 -204.
  • 10KIM E, PARK M, JI S, et al. A new approach to fuzzy modeling [ J]. IEEE Transactions on Fuzzy Systems, 1997, 5(3):328 -337.

二级参考文献20

  • 1杨一文,杨朝军.基于支持向量机的金融时间序列预测[J].系统工程理论方法应用,2005,14(2):176-181. 被引量:20
  • 2饶云华,曹阳,杨艳.自相似网络通信量的多尺度预测研究[J].计算机工程与应用,2005,41(28):26-28. 被引量:6
  • 3李捷,候秀红,韩志杰.基于卡尔曼滤波和小波的网络流量预测算法研究[J].电子与信息学报,2007,29(3):725-728. 被引量:14
  • 4[1]Sun T, Neuvo Y. Detail-preserving median based filters in image processing. Pattern Recognit. Lett., 1994,15:341-347.
  • 5[2]WangZhou, Zhang David. Progressive switching median filterfor the removal of impulse noise from highly corrupted images. IEEE Trans. On Circuits and Systems,Ⅱ: Analog and Digital Signal Processing, 1999,46(1):.
  • 6[3]WangJung-Hua, Lin Lian-Da. Improved median filter usingminmax algorithm for image processing. Electronics Letters, 31st July, 1997,33(16):.
  • 7[4]Brownrigg D R K. The weighted median filter. Commun. Ass. Comput. Mach., 1984,27(8):807~818.
  • 8吴今培.系统辨识[M].北京:中国铁道出版社,1993.205-207.
  • 9JUVA I, VATON S, VIRTAMO J. Quick traffic matrix estimation based on link count covariances [ C ]//Proc of IEEE International Conference on Communications. 2006:603-608.
  • 10NICOL D M, YAN Guan-hua. High-performance simulation of low- resolution network flows[ J]. Simulation ,2006,82 ( 1 ) :21-42.

共引文献215

同被引文献13

  • 1向微,陈宗海.基于Hammerstein模型描述的非线性系统辨识新方法[J].控制理论与应用,2007,24(1):143-147. 被引量:25
  • 2DING F,SHI Y. Auxiliary model based least-squares identification methods for Hammerstein output-error systems[J].{H}Systems & Control Letters,2007,(05):373-380.
  • 3WANG D Q,DING F. Input-output data filtering based recursive least squares parameter estimation for CARARMA systems[J].{H}DIGITAL SIGNAL PROCESSING,2010,(04):991-999.
  • 4XIAO Y S,YUE N. Parameter estimation for nonlinear dynamical adjustment models[J].{H}Mathematical and Computer Modelling,2011,(5/6):1561-1568.
  • 5XIE L,YANG H Z,DING F. Recursive least squares parameter estimation for non-uniformly sampled systems based on the data filtering[J].{H}Mathematical and Computer Modelling,2011,(1/2):315-324.
  • 6DING F,CHEN T,QIU L. Bias compensation based recursive least-squares identification algorithm for MISO systems[J].IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2006,(05):349-353.doi:10.1109/TCSII.2005.862281.
  • 7丁锋.系统辨识新论[M]{H}北京:科学出版社,2013.
  • 8陈鹏,钱徽,朱淼良.基于加权最小二乘的卡尔曼滤波算法[J].计算机科学,2009,36(11):230-231. 被引量:8
  • 9刘凡,赵凤军,邓云凯,禹卫东,艾加秋.一种基于最小二乘直线拟合的高分辨率DBS成像算法[J].电子与信息学报,2011,33(4):787-791. 被引量:10
  • 10刘士荣,朱伟涛,杨帆,仲朝亮.基于多特征融合的粒子滤波目标跟踪算法[J].信息与控制,2012,41(6):752-759. 被引量:13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部