期刊文献+

基于主曲线的多输入多输出支持向量机算法 被引量:2

Multi-input-multi-output support vector machine based on principal curve
下载PDF
导出
摘要 针对传统多输入多输出(MIMO)支持向量机(SVM)没有考虑多个输出端之间依赖关系的问题,提出了一种新的基于主曲线的MIMO SVM算法。该算法基于所有输出端的模型参数位于一个流形上的假设,首先在现有的多维支持向量回归机(M-SVR)的基础上,构建一个流形正则化的优化目标,其中正则项为输出端模型参数到通过所有参数集合中间的主曲线的投影距离;其次,由于该优化目标为非凸,采用交替优化的方法,交替计算模型参数和参数集合的主曲线,直至收敛。采用仿真数据和实际的载荷识别工程数据进行验证,结果表明,与M-SVR和SVM单独建模方法相比,该算法可有效提高预测精度和数值稳定性。 To solve the problem that the traditional Multi-Input-Multi-Output (MIMO) Support Vector Machine (SVM) generally ignore the dependency among all outputs, a new MIMO SVM algorithm based on principal curve was proposed in this paper. Following the assumption that the model parameters of all outputs locate on a manifold, this paper firstly constructed a manifold regularization based on the Multi-dimensional Support Vector Regression ( M-SVR), where the regularizer was the squared distance from the output parameters to the principal curve through the middle of all parameters' set. Secondly, considering the non-convexity of this regularization, this paper introduced an alternative optimization method to calculate the model parameters and principal curve in turn until convergence. The experiments on simulated data and real-life dynamic load identification data were conducted, and the results show that the proposed algorithm performs better than M-SVR and SVM based separate modeling method in terms of prediction precision and numerical stability.
出处 《计算机应用》 CSCD 北大核心 2013年第5期1281-1284,1293,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(U1204609) 河南省基础与前沿技术研究计划项目(122300410111) 河南省重点科技攻关项目(102102210176)
关键词 支持向量机 多输入多输出 主曲线 交替优化 流形正则化 Support Vector Machine (SVM) Multi-Input-Multi-Output (MIMO) principal curve alternating optimization manifold regularization
  • 相关文献

参考文献10

  • 1周欣然,滕召胜,赵新闻.基于LSSVM的MIMO系统快速在线辨识方法[J].计算机应用,2009,29(8):2281-2284. 被引量:5
  • 2SANCHEZ-FERNANDEZ M, DE-PRADO-CUMPLIDO M, ARE- NAS-GARCfA J, et al. SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems [ J]. IEEE Transactions on Signal Processing, 2004, 52(8):2298 -2307.
  • 3VAPNIK V N. The nature of statistical learning theory[ M]. New York: Springer, 1995.
  • 4MAO W T, TIAN M, YAN G R. Research of load identification based on multiple-input multiple-output SVM model selection[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineers Science, 2012, 226(5) : 1395 - 1409.
  • 5李建伟,汪友华,吴清.基于多维输出支持向量回归机的脑电源定位[J].中国组织工程研究与临床康复,2009,13(17):3256-3259. 被引量:4
  • 6张军平,王珏.主曲线研究综述[J].计算机学报,2003,26(2):129-146. 被引量:62
  • 7KEGL B, KRZYZAK A, LINDER T, et al. Learning and design of principal curves[ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2000, 22(3): 281-297.
  • 8齐红威,张军平,王珏.主曲线异常检测及其在股票市场中的应用[J].计算机研究与发展,2005,42(8):1306-1311. 被引量:6
  • 9CAWLEY G C, TALBOT N L C. Preventing over - fitting during model selection via Bayesian regularisation of the hyper-parameters [ J]. Journal of Machine Learning Research, 2007, 8:841 -861.
  • 10毛文涛.支持向量回归机模型选择研究及在综合力学环境预示中的应用[D].西安:西安交通大学,2011.

二级参考文献67

共引文献76

同被引文献13

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部