期刊文献+

基于分层Option的仿人机器人相似性关键姿势转换

Similar key posture transformation based on hierarchical Option for humanoid robot
下载PDF
导出
摘要 针对运动捕获系统获取的人体运动轨迹固定、难以实现仿人机器人关键姿势转换问题,提出了一种基于分层Option学习的仿人机器人关键姿势相似性转换方法。构建多级关键姿势树状结构,从关节相似差异、时刻整体相似差异、周期整体相似差异等角度描述了关键姿势差异,引入分层强化Option学习方法,建立关键姿势与Option行为集,由关键姿势差异的累计奖励将SMDP-Q方法逼近最优Option值函数,实现了关键姿势的转换。实验验证了方法的有效性。 Concerning the problem in which the fixed locomotion track captured from human movement can not be used in transformation between key postures for humanoid robot, a method of similar key posture transformation based on hierarchical Option for humanoid robot was proposed. The multi-level dendrogram of key postures was constructed and the difference of key postures was illustrated in respects of similar joint difference, moment total similar difference, period total similar difference. The hierarchical reinforcement Option learning was introduced, in which the sets of key postures and Option actions were constructed. SMDP-Q method tended to be the optimal Option function by the accumulative rewards of key posture difference and the transformations were realized. The experiments show the validity of the method.
出处 《计算机应用》 CSCD 北大核心 2013年第5期1301-1304,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61272382) 广东省自然科学基金资助项目(8152500002000003 S2012010009963) 广东省高等学校科技创新项目(2012KJCX0077) 广东高校石化装备故障诊断与信息化控制工程中心项目(512009)
关键词 仿人机器人 分层强化学习 相似性 姿势 humanoid robot hierarchical reinforcement learning similarity posture
  • 相关文献

参考文献11

  • 1赵晓军,黄强,彭朝琴,张利格,李科杰.基于人体运动的仿人型机器人动作的运动学匹配[J].机器人,2005,27(4):358-361. 被引量:34
  • 2柯文德,崔刚,洪炳镕,蔡则苏,朴松昊,钟秋波.参数化优化的仿人机器人相似性前向倒地研究[J].自动化学报,2011,37(8):1006-1013. 被引量:14
  • 3ARISTIDOU A, LASENBY J. Motion capture with constrained in- verse kinematics for real-time hand tracking[ C]// The 4th Interna- tional Symposium on Communications, Control and Signal Process- ing. Piscataway: IEEE Press, 2010: 1 -5.
  • 4CONNAGHAN D, CONAIRE O, KEUY P, et al. Recognition of tennis strokes using key postures[ C]// ISSC 2010: SignaLs and Sys- tems Conference. Piscataway: IEEE, 2010:245-248.
  • 5HSIEtt J W, CHEN S Y, CHUANG C H, et al. Occluded human body segmentation and its application to behavior analysis[ C]//Pro- ceedings of 2010 IEEE International Symposium on Circuits and Sys- tems. Piscataway: IEEE, 2010:3433-3436.
  • 6IISIEH J W, CHUANG C H, CHEN S Y, et al. Segmentation of human body parts using deformable triangulation[ J]. IEEE Transac-tions on Systems, Man and Cybernetics, Part A: Systems and Hu- mans, 2010, 40(3) : 596 -610.
  • 7谷军霞,丁晓青,王生进.基于人体行为3D模型的2D行为识别[J].自动化学报,2010,36(1):46-53. 被引量:16
  • 8SUTTON R S, PRECUP D, SINGH S. Between MDPs and semi- MDPs a framework for temporal abstraction in reinforcement learning [ J]. Artificial Intelligence, 1999, 112(1) : 181 - 211.
  • 9DIETYERICH T G. Hierarchical reinforcement learning with the MAXQ value function decomposition[ J]. Journal of Artificial Intelli- gence Research, 2000, 13(1) : 227 -303.
  • 10BARTO A G, MAHADEVAN S. Recent advances in hierarchical re- inforcement learning[ J]. Discrete Event Dynamic Systems, 2003, 13(1/2): 41-77.

二级参考文献59

  • 1张汝波,顾国昌,杨歌,郭轶尊.具有学习能力的智能机器人体系结构研究[J].华中科技大学学报(自然科学版),2004,32(S1):58-60. 被引量:4
  • 2赵晓军,黄强,彭朝琴,张利格,李科杰.基于人体运动的仿人型机器人动作的运动学匹配[J].机器人,2005,27(4):358-361. 被引量:34
  • 3张利格,黄强,杨洁,时有,王志杰,JAFRI Ali Raza.仿人机器人复杂动态动作设计及相似性研究[J].自动化学报,2007,33(5):522-528. 被引量:28
  • 4Davis J W, Bobick A F. The representation and recognition of human movement using temporal templates. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico: IEEE, 1997. 928-934.
  • 5Wang L, Suter D. Informative shape representations for human action recognition. In: Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 1266-1269.
  • 6Mohiuddin A, Lee S W. Human action recognition using shape and CLG-motion flow from multiview image sequences. Pattern Recognition, 2008, 41(7): 2237-2252.
  • 7Weinland D, Boyer E, Ronfard R. Action recognition from arbitrary views using 3D exemplars. In: Proceedings of the 11th International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-7.
  • 8Ren H B, Xu G Y. Human action recognition with primitivebased coupled-HMM. In: Proceedings of the 16th International Conference on Pattern Recognition. Quebec, Canada: IEEE, 2002. 494-498.
  • 9Shen Y P, Ashraf N, Foroosh H. Action recognition based on homography constraints. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 10Yilmaz A, Shah M. Matching actions in presence of camera motion. Computer Vision and Image Understanding, 2006, 104(2-3): 221-231.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部