期刊文献+

支持向量机的混合核函数参数优选方法 被引量:11

Parameters optimization of combined kernel function for support vector machine
下载PDF
导出
摘要 针对支持向量机中混合核函数参数的选取还没有一套完整的理论支撑,提出基于蚁群算法和循环交叉验证法的参数优选方法。以平均加权误差作为不同参数下支持向量机预测效果的评价指标,采用循环交叉验证法计算平均加权误差。采用蚁群算法来提高混合核函数参数优化效率,减少计算工作量。通过在某型飞机机体研制费用预测中的应用,显示基于最优参数下混合核函数的支持向量机的预测误差最小,表明该参数优选方法能够提高预测精度。 Concerning the lack of an integrated theory system to select the parameters of combined kernel function used in Support Vector Machine (SVM), one method based on ant colony algorithm and circulated cross validation was put forward to get the optimal parameters. The index named as the mean weighting error was used to evaluate the effect of SVM prediction in different parameters. The value of mean weighting error could be calculated by circulated cross validation. To decrease the calculation workload, the ant colony algorithm was used to enhance the optimization effect of combined kernel function for SVM. This method offered in this paper was applied in the prediction of some plan development cost and the result showed that the optimized combined form of the parameters had the least prediction error. The instance indicates that the parameters optimization method in this paper can improve the prediction precision.
出处 《计算机应用》 CSCD 北大核心 2013年第5期1321-1323,1356,共4页 journal of Computer Applications
关键词 支持向量机 预测精度 参数优选 加权误差 蚁群算法 Support Vector Machine (SVM) prediction precision parameters optimization weighting error ant colony algorithm
  • 相关文献

参考文献11

  • 1OLIVIER D, CYRIL R, ALEXANDRA D, et al. Support Vector Machines (SVM) in Near Infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation [ J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96(1) : 27 -33.
  • 2颜根廷,李传江,马广富.基于混合遗传算法的支持向量机参数选择[J].哈尔滨工业大学学报,2008,40(5):688-691. 被引量:15
  • 3HUANGA C-M, LEE Y-J, LIN D K J, et al. Model selection for support vector machines via uniform design [ J]. Computational Sta- tistics & Data Analysis, 2007, 52(1) : 335 -346.
  • 4LIANG J J, WU D. A new smooth support vector machine[ C]// AICI'10: Proceedings of the 2010 International Conference on Artificial Intelligence and Computational Intelligence: Part I. Berlin: Springer-Verlag, 2010:266 - 272.
  • 5朱燕飞,伍建平,李琦,毛宗源.MISO系统的混合核函数LS-SVM建模[J].控制与决策,2005,20(4):417-420. 被引量:15
  • 6谭泗桥,袁哲明,柏连阳,谭显胜,熊洁仪.基于局部核函数与全局核函数支持向量回归优化小样本QSAR建模[J].分子科学学报,2009,25(3):158-162. 被引量:4
  • 7薛欣,贺国平.基于多个混合核函数的SVM决策树算法设计[J].计算机工程与应用,2007,43(8):142-144. 被引量:17
  • 8LAM K C, YU C Y. A multiple kernel learning-based decisionsupport model for contractor pre-qualification [ J]. Automation in Construction, 2011,20(5) : 531 - 536.
  • 9DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[ J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1) : 53 - 66.
  • 10DORIGO M, STUTZLE T. Ant colony optimization [M]. Cambridge: MIT Press, 2004.

二级参考文献41

共引文献46

同被引文献147

引证文献11

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部