期刊文献+

PCL和PU填料用于低C/N值污水处理的对比 被引量:4

Comparison of Polycaprolactone and Polyurethane as Carriers for Treating Low C/N Wastewater
原文传递
导出
摘要 在序批式生物膜反应器中,分别以可生物降解聚己酸内酯(PCL)和可生物降解聚氨酯(PU)为填料,进行了处理低C/N值污水的对比研究。结果表明,在进水C/N值为4.3时,装有PCL填料的1#反应器的启动历时约35 d,而装有PU填料的2#反应器在28 d后即启动成功。最终1#反应器的出水氨氮稳定在4~7 mg/L,2#反应器的出水氨氮稳定在2~5 mg/L。提高进水氮负荷后,1#反应器出水氨氮浓度稳定在18~22 mg/L,2#反应器出水氨氮浓度稳定在6~9 mg/L。1#和2#反应器对总氮的去除率分别约为53.3%和65.3%。通过扫描电子显微镜观察,附着在PU和PCL上的生物膜结构区别很大,PCL上的生物膜以短杆菌和球菌为主,PU上的生物膜则以丝状菌和长杆菌为主。 The treatment efficiencies of low C/N wastewater by using two different materials as car- riers: biodegradable polycaprolactone (PCL) and polyurethane (PU) in sequencing batch biofilm reac- tors (SBBRs) was studied. The results showed that at influent C/N of 4.3, the start-up of the 1# reactor filled with PCL took about 35 d, while the start-up of the 2# reactor filled with PU took about 28 d. Final- ly, the ammonia nitrogen concentrations in the effluents from both reactors stabilized at 4 to 7 mg/L and 2 to 5 mg/L, respectively. After increasing the influent nitrogen load, the ammonia nitrogen concentra- tions in the effluent from both reactors stabilized at 18 to 22 mg/L and 6 to 9 mg/L respectively. The re- moval rates of TN by the two reactors were 53.3% and 65.3%, respectively. Scanning electron micros- copy indicated that the dominant bacteria in the biofilm on the PCL carriers were short rod-shaped and spherical bacteria, while those in the biofilm on the PU carriers were filamentous and long rod-shapedbacteria.
出处 《中国给水排水》 CAS CSCD 北大核心 2013年第9期5-8,共4页 China Water & Wastewater
基金 国家创新研究群体项目(51121062)
关键词 低C N值污水 脱氮 可生物降解填料 固体碳源 low C/N wastewater nitrogen removal biodegradable carrier solid carbon
  • 相关文献

参考文献7

  • 1Honda Y, Osawa Z. Microbial denitrification of wastewaler using biodegradable polycaprolaclnne [ J ]. Polym Degrad Stab,2002,76( 2 ) :321 - 327.
  • 2Waiters E, Hille A, He M,et al. Simuhaneous nitrifiea- tion/denitrifieation in a biofihn airlift suspension (BAS) reactor with biodegradable carrier material [ J ]. Water Res, 2009,43 ( 18 ) :4461 - 4468.
  • 3Chae K J, Kim S M, Park H I), et al. Development of pseudoamphoteric sponge media using polyalkylene oxide- modified polydimethylsiloxane (PDMS) for rapid statl-up of wastewater treatment plam[J]. Chemosphere,2008,71 (5) :961 -968.
  • 4Kim D, Kim K Y, l'lyu H D,et al. Long term operation of pilotscale biological m,trien! removal process in Ireating municipal wastewaler [ J ]. Bioresour Technol, 2009, 100 (13) :3180 -3184.
  • 5Chu L B, Wang J I,. Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed bio- film reactor for treating wastewater with a low C/N ratio [ J ]. Chemosphere,2011,83 ( 1 ) :63 - 68.
  • 6Third K A,Burnett N,Cord-Ruwisch R. Simultaneous ni- trification and denitrificalion using stored subslrate (PHB) as 1he electron donor in an SBR[J]. Biolechnol Bioeng,2003,83 ( 6 ) :706 - 720.
  • 7Simpson D R. Biofilm processes in biologically active car- bon water purification [ J ]. Water Res, 2008,42 ( 12 ) : 2839 - 2848.

同被引文献23

  • 1Third K A,Burnett N,Cord-Ruwisch R.Simultaneous ni-trification and denitrification using stored substrate(PHB)as the electron donor in a SBR[J].Biotechnol Bioeng,2003,83(6):706-720.
  • 2Holman J B,Wareham D G.COD,ammonia and dissolved oxygen time profiles in the simultaneous nitrification and denitrification process [ J ].Bioehem Eng J,2005,22(2):125-133.
  • 3Kindaiehi T,Ito T,Okabe S.Ecophysiological interaction between bitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microauto-radiography-fluorescence in situ hybridization [ J ].Appl Environ Microbiol,2007,70(3):1641-1650.
  • 4Park H D,Noguera D R.Evaluating the effect of dis-solved oxygen on ammonia-oxidizing bacterial communi-ties in activated sludge [ J ].Water Res,2004,38(14/15):3275-3286.
  • 5Moussavi G,Khavanin A,Sharifi A.Ammonia removal from a waste air tream using a biotriekling filter packed with polyurethane foam through the SND process [ J ].Bioresour Technol,2010,102(3):2517-2522.
  • 6Ni S, Gao B, Wang C, et al. Fast start-up, performance and microbial community in a Dilot-scale anammox reac- tor seeded with exotic mature granutes[J]. Bioresour Technol, 2011 , 102 ( 3 ) :2448 - 2454.
  • 7Kimura Y,Isaka K,Kazama F. Effects of inorganic car- bon limitation on anaerobic ammoniunl oxidation (anam- mox) activity [ J ]. Bioresour Technol, 2011 , 102 ( 6 ) : 4390 - 4394.
  • 8Bae H,Park K,Chung Y,et al. Distribution of anammox bacteria in domestic WWTPs and their enrichments eval- uated by real-time quantitative PCR [ J]. Process Bio- them,2010,45 (3) :323 - 334.
  • 9Fernandez 1, Vazquez-Padin J R, Mosquera-Corral A,et al. Biofilm and granular systems to improve Anammox biomass retention [ J ]. Biochem Eng Jr, 2008,42 ( 3 ) : 308 -313.
  • 10Jun B H,Miyanaga K,Tanji Y,et al. Removal of nitrog- enous and carbonaceous substances by a porous carrier - membrane hybrid process for wastewater treatment [ J ]. Biochem Eng J ,2003,14( 1 ) :37 - 44.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部