期刊文献+

光弹在库墨-高斯晶格中传输特性的研究 被引量:1

Transmission characteristics of bullet in Kummer-Gauss optical lattice
原文传递
导出
摘要 基于分布傅里叶算法及快速虚时间演化迭代法,研究了光弹在线性和非线性散射异相调制的库墨-高斯晶格中传输的特性.结果表明,线性和非线性相位调制显著地改变了光弹的形状及其稳定范围,并且非线性调制深度通过传播常数控制稳定性区域的宽度,稳定时空光孤子的能量随着非线性调制深度的加强而增长. Based on the division Fourier algorithm and the rapid virtual time evolution (AITEM) iterative method, the transmission characteristics of bullet in linear and nonlinear scattering out of phase modulation Kummer-Gauss optical lattice are studied. The results show that the linear and nonlinear phase modulation significantly change the bullet shape and its range of stability, and the nonlinear modulation depth through the propagation constant controls the stability region width. It is shown that stable space-time soliton energy will grow with nonlinear modulation depth strengthening.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第8期207-212,共6页 Acta Physica Sinica
基金 湖北省自然科学基金(批准号:2011cdc005) 湖北省教育厅重点项目(批准号:2012hcc003) 湖北科技学院项目(批准号:12010507069)资助的课题~~
关键词 时空光孤子 库墨-高斯晶格 快速虚时间演化迭代法 time-space soliton, the Kummer-Gauss lattice, rapid virtual time evolution iterative method
  • 相关文献

参考文献26

  • 1Silberberg Y 1990 Opt. Lett. 15 1282.
  • 2Malomed B A, Mihalache D, Wise F, Torner L 2005 J. Opt. B 7 53R.
  • 3Xu S L, Beli? M R, Zhang W P 2012 J. Opt. Soc. Am. B 29 1.
  • 4吴中, 王奇, 卫青 2001 物理学报 50 48].
  • 5何国岗,王晓生,佘卫龙.全光准稳态空间孤子对波长的依赖性[J].物理学报,2002,51(10):2270-2275. 被引量:5
  • 6刘劲松, 郝中华2002物理学报 51 2772].
  • 7Edmundson D E, Enns R H 1992 Opt. Lett. 17 586.
  • 8Desyatnikov A, Maimistov A, Malomed B 2000 Phys. Rev. E 61 3107.
  • 9Mihalache D, Mazilu D, Crasovan L C, Towers I, Buryak A V, Malomed B A, Torner L, Torres J P, Lederer F 2002 Phys. Rev. Lett. 88 073902.
  • 10Trapani P D, Caironi D, Valiulis G, Dubietis A, Danielius R, Piskarskas A 1998 Phys. Rev. Lett. 81 570.

二级参考文献19

  • 1[1]Segev M, Crosignani B, Yariv A and Fischer B 1992 Phys.Rev.Lett. 68 923
  • 2[2]Duree G C Jr, Shultz J L, Salamo G J, Segev M, Yariv A, Crosignani B, DiPorto P, Sharp E J and Neurgaonker R R 1993 Phys. Rev. Lett. 71 533
  • 3[3]Duree G, Morin M, Salama G, Segev M, Crosignani B, DiPorto P, Sharp E and Yariv A 1995 Phys.Rev.Lett. 74 1978
  • 4[4]She W L, Lee K K and Lee W K 2000 Phy.Rev.Lett. 85 2498
  • 5[6]Castillo M D I I, Aguilar P A M, Sanchez-Mondragon J J, Stepanov S and Vysloukh V 1994 Appl.Phys.Lett. 64 408Shih M, Leach P, Segev M, Garrett M H, Salamo G and Valley G C 1996 Opt.Lett. 21 324
  • 6[7]Segev M, Shih M, Valley G C, Crosignani B, DiPorto P and Yariv A 1994 Phys.Rev.Lett. 73 3211
  • 7[8]Segev M, Shih M and Valley G C 1996 J.Opt.Soc.Am. B 13 706Christodoulides D N and Carvalho M I 1995 J.Opt.Soc.Am. B 12 1628
  • 8[9]Kos K, Meng H, Salamo G, Shih M, Segv M and Valley G C 1996 Phys.Rev. E 53 R4330Ryf R, Wiki M, Montemezzani G, Guter P and Zozulya A A 1999 Opt.Commum. 159 339
  • 9[10]Chen Z, Segev M, Coskun T H, Christodoulides D N, Kivshar Y S and Afanasjev V V 1996 Opt.Lett. 21 1821
  • 10[11]Segrv M, Vally G C, Bashaw M C, Taya M and Fejer M M 1997 J.Opt.Soc.Am. B 14 1772

共引文献4

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部