期刊文献+

稀土盐水溶液单泡声致发光中的特征光谱 被引量:2

Characteristic spectra of single-bubble sonoluminescence in the rare-earth salt aqueous solutions
原文传递
导出
摘要 在溶有稀有气体的稀土盐氯化铽水溶液中进行了单泡声致发光光谱的研究.在固定驱动超声频率、不同驱动声压下,观察到了一系列OH自由基从第一激发态A2Σ+到基态X2Π各振动能级跃迁所产生的谱线,包括波长307nm处的(0,0)跃迁谱线,335nm处的(0,1)跃迁谱线以及276nm处的(1,0)跃迁谱线等.实验结果表明较高的驱动声压有利于276nm处谱线的产生,而较低的驱动声压则有利于307与335nm处谱线的产生.通过定义线状光谱与连续谱的光强比,定量地表征了线状光谱在总光谱中的相对强度,并给出了驱动声压对各跃迁谱线光强比的影响. The single-bubble sonoluminescence spectra of the terbium chloride aqueous solutions dissolved with the noble gas Ar are studied in this paper. Under the condition of fixed driving ultrasonic frequency and different sound pressures, a series of line spectra is identified as emissions from the transitions of OH radical vibrational levels from the first excited state A^2∑^+ to the ground state X^2П, including (0, 0) transition at 307 nm, (0, 1) transition at 335 nm and (1, 0) transition at 276 nm and so on. The experimental results show that higher sound pressure is conducive to the appearance of the line spectrum at 276 nm while lower sound pressure is favorable for the appearance of the line spectra at 307 nm and 335 nm. The relative intensity of the line spectrum in the total spectrum is expressed quantificationally by defining an intensity ratio of the line spectrum to the continuous spectrum. In addition, the effects of the driving sound pressure on the intensity ratios of different line spectra are given.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第8期502-507,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11174145 10974095)资助的课题~~
关键词 单泡声致发光 驱动声压 线状光谱 光强比 single-bubble sonoluminescence, driving sound pressure, line spectra, intensity ratio
  • 相关文献

参考文献13

  • 1Walton A J, Reynolds G T 1984 Adv. Phys. 33 595.
  • 2Crum L A 1994 Phys. Today 47 22.
  • 3Gaitan D F, Crum L A, Church C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166.
  • 4Sehgal C, Sutherland R G, Verrall R E 1980 J. Phys. Chem. 84 388.
  • 5Gordeychuk T V, Didenko Y T, Pugach S P 1996 Acoust. Phys. 42 240.
  • 6Lepoint T, Lepoint-Mullie F, Voglet N, Labouret S, Petrier C, Avni R, Luque J 2003 Ultrason. Sonochem. 10 167.
  • 7Didenko Y T, Gordeychuk T V 2000 Phys. Rev. Lett. 84 5640.
  • 8Pflieger R, Brau H P, Nikitenko S I 2010 Chem. Eur. J. 16 11801.
  • 9Xu J F, Chen W Z, Xu X H, Liang Y, Huang W, Gao X X 2007 Phys. Rev. E 76 026308.
  • 10徐兴华,陈伟中,梁越,徐俊峰.声致发光中线状光谱的参数相关性[J].科学通报,2007,52(11):1237-1241. 被引量:3

二级参考文献11

  • 1刘亚楠,陈伟中,黄威,高贤娴,姜李安,徐俊锋,朱逸斐.稳态声空化泡的高精度测量技术[J].科学通报,2005,50(22):2458-2462. 被引量:10
  • 2Walton A J, Reynolds G T. Sonoluminescence. Adv Phys. 1984, 33: 595--660.
  • 3Crum L A. Sonoluminescence. Phys Today, 1994, 47(9): 22--26.
  • 4Gaitan D F, Crum L A, Roy R A, et al. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am, 1992, 91:3166--3183.
  • 5Matula T J, Roy R A. Mourad P D, et al. Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett, 1995, 75(13): 2602--2605.
  • 6Didenko Y T, Gordeychuk T V. Multibubble sonoluminescence spectra of water which resemble single-bubble sonoluminescence. Phys Rev Lett, 2000. 84(24): 5460--5463.
  • 7Young J B, Nelson J A, Kang W. Line emission in single-bubble sonoluminescence. Phys Rev Lett, 2001, 86(12): 2673--2676.
  • 8Flannigan D J, Suslick K S. Plasma formation and temperature measurement during single-bubble cavitation. Nature. 2005, 434: 52--55.
  • 9Flannigan D J, Hopkins S D, Camara C G, et al. Measurement of pressure and density inside a single sonoluminescing bubble. Phys Rev Lett, 2006, 96:204301.
  • 10Lohse D, Brenner M E Dupont T F, et al. Sonoluminescing air bubble rectify Argon. Phys Rev Lett, 1997, 78(7): 1359--1362.

共引文献2

同被引文献23

  • 1Goncalves E. Numerical Study of Expansion Tube Problems: Toward the Simulation of Cavitation [ J]. Computers & Fluids, 2013 , 72: 1-19.
  • 2Margulis M A, Margulis I M. Luminescence Mechanism of Acoustic and Laser-Induced Cavitation[ J]. Acoustical Physics,2006 , 52(3) : 283-292.
  • 3Lind S J, Phillips T N. Bubble Collapse in Compressible Fluids Using a Spectral Element Marker Particle Method. Part 2. Viscoelastic Fluids [ J ]. International Journal for Numerical Methods in Fluids, 2013, 71(9) : 1103-1130.
  • 4Luo X W, Wei W, Ji B, et al. Comparison of Cavitation Prediction for a Centrifugal Pump with or without Volute Casing [ J1. Journal of Mechanical Science and Technology, 2013, 27 (6) : 1643-1648.
  • 5Kim S, MujTenhoff H. Measurement of Effective Bulk Modulus for Hydraulic Oil at Low Pressure [ J ]. Journal of Fluids Engineering—Transactions of the ASME, 2012, 134 ; 0212012.
  • 6Zhang L, Luo J, Yuan KB, et al. The CFD Analysis of Twin Flapper-Nozzle Valve in Pure Water Hydraulic [ J ]. ProcediaEngineering, 2012, 31; 220-227.
  • 7Berg A, Iben U, Meister A, et al. Modeling and Simulation of Cavitation in Hydraulic Pipelines Based on the Thermodynamic and Caloric Properties of Liquid and Steam [ J]. Shock Waves, 2005, 14(1/2) : 111-121.
  • 8Rooze J, Rebrov E V, Schouten J C, et al. Dissolved Gas and Ultrasonic Cavitation-a Review [ J]. Ultrasonics Sonochemistry, 2013, 20(1): 1-11.
  • 9Gaitan D F, Crum L A, Church C C, et al. Sonoluminescence and Bubble Dynamics for a Single, Stable, Cavitation Bubble [J]. Journal of the Acoustical Society of America, 1992 , 91 (6): 3166-3183.
  • 10Barber B P, Hiller R A, Lofstedt R, et al. Defining the Unknowns of Sonoluminescence [ J ]. Physics Reports, 1997, 281(2): 65-143.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部