期刊文献+

基于脑电同步的嗅觉仿生模型优化研究 被引量:2

On Olfactory Bionic Model Optimization Based on EEG Synchronization
下载PDF
导出
摘要 以提高嗅觉系统模型的仿生度为目标,研究了嗅觉模型优化问题。考虑到同步状态是脑电信号间普遍出现的现象,以嗅觉模型输出之间是否出现同步状态为研究目标。研究的关键点包括如下几个:(1)优化指标:以信号的相位信息为对象,将模型输出信号之间的相位同步程度作为优化指标,并采用锁相位方法计算相位同步程度;(2)输出信号选择:考虑到嗅皮层在信息处理中的作用,以嗅皮层中兴奋性的NII层节点输出作为模型输出;(3)参数优化:考虑到对神经调质兴奋度的模拟,以增益系数为优化参数,并基于锁相位方法通过计算确定参数的优化值。研究结果表明,对增益系统的优化可以提高模型输出信号的相位同步程度,当增益系数取值在5附近时,模型输出呈现出的同步特性最为明显。 Aiming to improve the simulating degree of olfactory system model, optimizing problem of olfactory system model was researched. Considering obvious presence of electroencephalogram synchronization, if there was synchronization state of the model output or not was used as research aim. The research key included three aspects: (1) Optimizing index. The phase information of signals was used as object. Phase locking value was calculated to evaluate synchronization degree. The phase synchronization degree between model outputs was used as optimizing index; (2) Output signals selection. Considering important effect of olfactory cortex in information processing, the outputs of nodes of excited ]VII layer of olfactory cortex were used as model outputs; (3) Parameters optimizing. The gain coefficient, simulating excited degree of neuromodulator, was used as optimized parameter. The optimized value was decided based on phase locking value. Research results show that optimized gain coefficient can improve phase synchronization degree among model outputs. When the value of gain coefficient is about 5, the synchronization degree of model outputs is the most obvious.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第5期907-910,共4页 Journal of System Simulation
基金 国家自然科学基金项目(60901080) 湖南中医药大学校级青年课题(99820001) 湖南中医药大学教改课题(2012-JG24) 湖南省科技厅软科学课题(2011ZK3163)
关键词 嗅觉仿生模型 脑电 相位同步 锁相位 增益系数 olfactory bionic model EEG phase synchronization phase locking gaining coefficient
  • 相关文献

参考文献2

二级参考文献17

  • 1杨如乃,胡志忠,卢健.生物嗅觉神经系统模型的模拟与分析[J].生物医学工程研究,2006,25(3):131-136. 被引量:7
  • 2WU ChunSheng,WANG LiJiang,ZHOU Jun,ZHAO LuHang,WANG Ping.The progress of olfactory transduction and biomimetic olfactory-based biosensors[J].Chinese Science Bulletin,2007,52(14):1886-1896. 被引量:5
  • 3Stuart Firestein. How the olfactory system makes sense of scents [J]. Nature (S0028-0836), 2001, 413(14): 211-218.
  • 4Freeman WJ, Yao Y, Burke B. Central pattern generating and recognizing in olfactory bulb: a correlation learning rule [J]. Neural Networks (S0893-6080), 1988, 1(4): 277-288.
  • 5Yao Y, Freeman WJ. Model of biological pattern recognition with spatially chaotic dynamics [J]. Neural Networks (S0893-6080), 1990, 3(2): 285-290.
  • 6Chang H J, Freeman W J. Biologically modeled noise stabilizing neurody-namics for pattern recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1998, 8(2): 321-345.
  • 7Chang H J, Freeman W J. Pattern optimization in models of the olfactory neural system [J]. Neural Networks (S0893-6080), 1996, 89(1): 1-14.
  • 8Yang Xinling, Fu Jun, Luo Zhengguo. Tea classification based on artificial using bionic olfactory neural networks [C]// Proceedings of Third International Symposium on Neural Networks, Chengdu, China, 2006. New York, USA: Springer, 2006, 3973: 343-348.
  • 9Liljenstrom H. Modeling the dynamics of olfactory cortex using simplified network units and realistic architecture [J]. Int. J. NeuralSystems (S0129-0657), 1991, 2(1-2): 1-15.
  • 10Xiangbao Wu, Hans Liljenstrom. Regulating the nonlinear dynamics of olfactory cortex [J]. Network: Computation in Neural Systems (S0954-898X), 1994, 5(1): 47-60.

共引文献4

同被引文献24

  • 1王兴元,骆超,谭贵霖.EEG动力学模型中混沌现象的研究[J].生物物理学报,2005,21(4):307-316. 被引量:8
  • 2Paolo Gaudiano. A Simulations of X and Y retinal ganglion cell behavior with a nonlinear push-pull model of spatiotempoml retinal processing [J]. Vision Research (S0042-6989), 1994, 34(13): 1767-1784.
  • 3Archambeau C, Delbeke J, Veraart C, et al. Prediction of visual perception with artificial neural networks in a visual prosthesis for the blind. Artif Intell Med (S0933-3657), 2004, 32(3): 183-194.
  • 4Eckmiller R, Neumann D, Baruth O. Tunable retina encoders for retina implants: why and how [J]. Journal of Neural Engineering (S1741-2560), 2005, 2(1): 91-104.
  • 5Helga Kolb. How the Retina Works [J]. American Scientist (S0003-0996), 2003, 91(1): 28-35.
  • 6管旭东.视网膜仿真模型及其感知效能分析[D].上海:复旦大学,2010.
  • 7Kolb H, Fernandez E, Nelson R. Web vision: The Organization of the Retina and Visual System [EB/OL]. Salt Lake City (UT): University of Utah Health Sciences Center, (1995) [2012-1-31]. http://www.ncbi.nlm.nih.gov/books/NBK 11533.
  • 8Sjostrand J, Olsson V, Popovic Z, et al. Quantitative estimations of foveal and extra-foveal retinal circuitry in humans [J]. Vision research (S0042-6989), 1999, 39(18): 2987-2998.
  • 9Thiel A, G-reschner M, Ammermiiller J. The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing [J]. Journal of computational neuroscience (S0929-5313), 2006, 21(2): 131-151.
  • 10Jin Fan, Xiao Fan Wang. A Wavelet View of Small-World Networks. IEEE Transactions on Circuits and Systems (S1057-7122). 2005, 52(5): 238- 241.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部