期刊文献+

一种基于二分图匹配模型的多播寻呼机制 被引量:1

Multicast Paging Scheme Based on Bipartite Graph Matching Model
下载PDF
导出
摘要 针对多播业务中,无线网络如何在带宽和时延受限的情况下,实现对于多个处于空闲状态的移动用户的跟踪定位问题,提出了一种有效的基于二分图匹配模型的多播寻呼机制。其主要思想是:首先通过利用信息论中熵的概念对移动用户的位置不确定性进行分析,为了减少位置更新开销,采用LZ78压缩算法实现位置更新和位置概率预测。然后多播寻呼系统为减少寻呼开销和时延,在每个寻呼周期内为所有移动用户分配的寻呼小区驻留概率之和最大,且满足带宽限制和用户公平性。针对该目标,基于二分图匹配的多播寻呼算法BMPS构建二分图模型,将位置概率转化为权值,通过动态修改权值,获取二分图最大权完美匹配,实现用户与寻呼小区之间的最优分配方案。仿真实验结果表明,基于二分图匹配的多播寻呼算法能够有效实现寻呼开销和时延的总体性能优化,且减少了用户冲突对寻呼性能影响。 Aiming at one of the most important problems in the multicast service of how the wireless network could track and locate the mobile users in idle state, under the tight bandwidth and delay constraints, an efficient multicast paging scheme was proposed based on bipartite graph matching model. By quantifying the location uncertainty of mobile users with entropy, the scheme adopted the LZ78 compression algorithm to design location update scheme and predict the location probability to reduce the cost of location update. With the purpose of optimal performance on both expected paging delay and paging cost, the multicast paging system needed to guarantee the maximum total probability that each user resided at the assigned paging area. Therefore, the bigraph-based multicast paging scheme (BMPS) firstly built the bipartite graph model of multicast paging problem, through converting the location probability into weight of the edge. BMPS decided the optimal allocation between the mobile users and location areas, which was mainly achieved by the maximum weight perfect matching in bipartite graph, with dynamically modified the weights. Simulation results show that BMPS yields a low paging delay as well as a low paging cost, and reduces the impact of user collision.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第5期1014-1023,共10页 Journal of System Simulation
基金 国家自然科学基金-青年科学基金项目(61201231) 重大专项TD-LTE系统(2012ZX03003005-00)
关键词 多播寻呼 二分图匹配 位置概率预测 寻呼开销 寻呼时延 multicast paging bipartite graph matching location probability prediction paging cost paging delay
  • 相关文献

参考文献13

  • 1Amotz Bar-Noy, Grzegorz Malewicz. Establishing wireless conference calls under delay constraints [C]//The 2 lth ACM Symp on Principles of Distributed Computing (PODC), (2002). USA: ACM, 2002: 41-50.
  • 2A BaroNoy, I Kessler, S Moshe. Mobile users: to update or not to update? [J]. Wireless Network (S1022-0038), 1995, 1(2): 175-195.
  • 3Yi-hua Zhu, Victor C M. Leung. Optimization of Sequential Paging in Movement-Based Location Management Based on Movement Statistics [J]. IEEE Transaction on Vehicular Technology (S0018-9545), 2007, 56(2): 955-964.
  • 4Bruce Hajek, Kevin Mitzel, Sichao Yang. Paging and Registration in Cellular Networks: Jointly Optimal Policies and an Iterative Algorithm [J]. IEEE Transactions on Information Theory: (S0018-9448), 2008, 54(2): 608-622.
  • 5Petzold J, Pietzowski A, Bagei F, et al. Prediction of indoor movements using bayesian networks [M]//Location-and Context- Awareness. Berlin Heidelberg, Germany: Springer, 2005:211-222.
  • 6Vintan L, Gellert A, Petzold J, et al. Person movement prediction using neural networks [C]// First Workshop on Modeling and Retrieval of Context. 2004.
  • 7Daniel Ashbrook, Thad Starner. Using GPS to learn significant locations and predict movement across multiple users [J]. Personal and Ubiquitous Computing (S 1617-4917), 2003, 7(5): 275-286.
  • 8Petzold J, Bagci F, Trumler W, et al. Comparison of different methods for next location prediction [M]//Euro-Par 2006 Parallel Processing. Berlin Heidelberg, Germany: Springer 2006:909-918.
  • 9Maitra M, Saha D, Bhattacharjee P S, et al. An intelligent paging strategy using rule-based AI technique for locating mobile terminals in cellular wireless networks [J]. IEEE Transactions on Vehicular Technology (S0018-9545), 2008, 57(3): 1834-1845.
  • 10Xiao Y, Chen H, Guizani M. Non-Blocking Pipeline Paging with Known Location Probabilities for Wireless Systems [J]. IEEE Transactions on wireless communications (S1536-1276), 2007, 6(10): 3632-3640.

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部