期刊文献+

改性石墨烯用作燃料电池阴极催化剂 被引量:13

Application of Modified Graphene for Cathode Catalysts in Fuel Cells
原文传递
导出
摘要 石墨烯材料以其独特的超薄片层结构、超高比表面积、良好的导电性等重要特性,而被认为在制备高性能燃料电池催化剂方面具有重要的潜在应用价值。最近的一些研究工作表明,通过选择合适的制备方法和前驱体制备的改性石墨烯,对于氧还原反应具有一定的活性,可用作燃料电池阴极催化剂。目前有关石墨烯应用于燃料电池阴极催化剂的研究工作主要集中在两个方面:一是通过表面改性后直接作为燃料电池非贵金属阴极催化剂;二是将改性石墨烯作阴极催化剂载体而制备活性组分高度分散的高性能催化剂。尽管有关改性石墨烯的氧还原活性中心的结构尚不明确,然而由于这类材料在酸性及碱性环境下对氧还原的良好的催化性能,对改性石墨烯的研究已成为探索燃料电池非铂催化剂的新途径。随着这类材料的催化性能的不断提高和对表面-活性关系认识的不断深入,改性石墨烯材料在燃料电池方面将具有广阔的应用前景。 Graphene, as a novel material, is recognized as a type of potential and attractive materials for the preparation of high performance fuel cell catalysts due to its unique structure and properties, such as ultra thin layer structure, ultra high surface area, and excellent conductivity, etc. Recent investigation showed that doped or surface modified graphene can be a potential candidate for the fuel cell catalyst by choosing different preparation process and varying the precursors. In this paper, we reviewed the research works in recent years for the application of doped and modified graphene as the cathode catalysts for fuel cells, including the direct use of doped graphene as catalyst for oxygen cathodic reduction, and the use of doped or surface modified graphene as support for the preparation of high performance cathode catalyst. Although the exact active center on these doped graphene for oxygen reduction reaction is still under debate, the succeed catalysis in both alkaline and acid solution opened up a brand new approach for the development of non-precious catalysts in fuel cells. With the improvement of catalytic performance and further understanding of structure-activity relation, we prospected that the application of doped- graphene in fuel cells will be broadened.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2013年第5期717-725,共9页 Progress in Chemistry
基金 国家自然科学基金项目(No.21076089)资助
关键词 石墨烯改性 燃料电池 氧还原反应 阴极催化剂 modified graphene fuel cells oxygen reduction reaction cathode catatysts
  • 相关文献

参考文献43

  • 1Rao C N, Sood A K, Subrahmanyam K S, Govindaraj A. Angewandte Chemie International Edition, 2009, 48: 7752- 7777.
  • 2Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Letters, 2008, 8:902-907.
  • 3QuL, LiuY, Baek JB, Dai L. ACS Nano, 2010, 4: 1321- 1326.
  • 4Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323 : 760-764.
  • 5Wang H, Maiyalagan T, Wang X. ACS Catalysis, 2012, 2: 781-794.
  • 6Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J. Journal of Materials Chemistry, 2011, 21 : 8038-8044.
  • 7Sheng Z H, Shao L, Chert J J, Bao W J, Wang F B, Xia X H. ACS Nano, 2011, 5:4350-4358.
  • 8Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S. Energy & Environmental Science, 2011, 4 : 760-764.
  • 9Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J C, Pennycook S J, Dai H. Nature Nanotechnology, 2012, 7: 394- 400.
  • 10Shao Y, Wang J, Engelhard M, Wang C, Lin Y. Journal of Materials Chemistry, 2010, 20:743-748.

同被引文献271

引证文献13

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部