期刊文献+

交通事件的语义理解 被引量:3

Semantic comprehension of traffic events
下载PDF
导出
摘要 为了较好地对视频中交通事件进行语义理解,减少底层特征与高层事件间的语义鸿沟,提出一种具有通用性的交通事件识别框架.首先,把事件分为单车行为、人车交互行为与车车交互行为;然后,根据语义层次,按基本语义单元、基础语义事件和高级语义事件的顺序对交通事件进行识别,并根据逻辑化的自然约束语言(NCL)的规则,给出了交通事件的语义表达形式,通过对高级语义事件建立隐马尔可夫模型(HMM)得到事件的高级语义,在一定程度上跨越了语义鸿沟;最后,通过实验验证了提出的方法. In order to acquire semantic comprehension of traffic events more clearly, and to reduce the semantic gap between low-level feature and high-level events, a universal recognition framework for traffic events was developed, which firstly classified events into three types: single vehicle behavior, human-vehicle interaction behavior and vehicle-vehicle interaction behavior. Then the traffic events were identified in order of basic semantic unit, basic semantic event, and high-level semantic event according to semantic level. Moreover, a semantic expression in traffic event was proposed based on the rule of logical natural constraint language ( NCL), and the high-level semanteme of an event was got by establishing hidden Markov model (HMM) to a high-level semantic event, thus diminishing the semantic gap to a certain extent. At last, the method proposed was proved by experiment.
出处 《应用科技》 CAS 2013年第2期5-10,共6页 Applied Science and Technology
基金 黑龙江省交通厅重点项目(2012JT016)
关键词 交通事件 识别框架 自然约束语言 语义理解 语义表达 隐马尔可夫 traffic event recognition framework natural constraint language (NCL) semantic comprehension semantic expression hidden Markov model (HMM)
  • 相关文献

参考文献11

  • 1HAO Jiuyue, HAO Sheng, LI Chao. Vehicle behavior un- derstanding based on movement string[ C]//Proc, eedings of 1EEE Conference on Intelligent Transportation Systems. St. Louis, USA ,2009:243-248.
  • 2CHEN Sht,ching, SHYU Meiling, ZHANG Chengcui. A multimedia data mining framework: mining information from lraffic video sequences [ J ]. Journal of Intelligent In- formation Systems,2002,19( 1 ) : 61-77.
  • 3ELANGOVAN V, SHIRKHODAIE A. Context-based se- mantic labeling of human-vehicle interaetions in persistent smweillance systems [ C ]//Proceedings of SPIE-The Inter- national Society for Optical Engineering. Orlando, USA, 2011:8056:1-11.
  • 4HIGGINS R P. Automatic event recognition for enhanced situational awareness in UAV video [ C]//Proceedings of IEEE Militaly Communications Conference. Atlatnic City, USA, 2005:69284 : 1-6.
  • 5胡宏宇,李志慧,曲昭伟,王殿海.基于上下文的交通事件表达与识别[J].吉林大学学报(工学版),2009,39(S2):158-162. 被引量:4
  • 6魏维,邹书蓉,刘凤玉.多层视频语义概念分析与理解[J].计算机辅助设计与图形学学报,2008,20(1):85-92. 被引量:8
  • 7SAAD M H M, HUSSAIN A, HANG Xian, et al. Event de- scription from video stream for anomalous human aetivity and behaviour detection[ C]//Proceedings of 2011 IEEE 7th Inter- national Colloquium on Signal Processing and Its Applications. Penang, Malaysia, 2011:503-506.
  • 8柳伟,任仙怡,郭森.智能视频监控中的语义理解模型[J].深圳信息职业技术学院学报,2009,7(2):1-4. 被引量:1
  • 9王晓峰,张大鹏,王绯,史忠植.基于语义轨迹的视频事件探测[J].计算机学报,2010,33(10):1845-1858. 被引量:10
  • 10ZHOU Jianyang. Introduction to the constraint language NCL [J ]. Journal of Loaic ProaTamminz.2000.45 (1/2/3) ,71-103.

二级参考文献85

  • 1余卫宇,谢胜利,余英林,潘晓舟.语义视频检索的现状和研究进展[J].计算机应用研究,2005,22(5):1-7. 被引量:14
  • 2魏维,游静,刘凤玉,许满武.语义视频检索综述[J].计算机科学,2006,33(2):1-7. 被引量:18
  • 3代科学,武德峰,付畅俭,李国辉,李惠佳.视频挖掘技术综述[J].中国图象图形学报,2006,11(4):451-457. 被引量:11
  • 4魏维,赵学龙,刘凤玉,许满武.视频语义分类特征选择算法[J].系统仿真学报,2006,18(5):1143-1146. 被引量:5
  • 5侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 6Piciarelli C, Foresti G L, Snidaro L. Trajectory clustering and its applications for video surveillance//Proceedings of the IEEE International Conference on Advanced Video and Signal based Surveillance. Como, Italy, 2005.40-45.
  • 7Zhang Jianguo, Gong Shaogang. Action categorization with modified hidden conditional random field. Pattern Recogni tion Letters, 2010, 43(1): 197-203.
  • 8Ghanem Nagia, DeMenthon Daniel, Doermann David, Davis Larry. Representation and recognition of events in surveillance video using Petri nets//Proceedings of the International Conference on Computer Vision and Pattern Recognition Workshop. Washington, D.C. USA, 2004:112-120.
  • 9Fusier Florent et al. Video understanding for complex activity recognition. Machine Vision and Applications, 2007, 18 (3) 167-188.
  • 10Patino L, Behhadda H et al. Extraction of activity patterns of large video recordings. IET Computer Vision, 2008, 2(2)108-128.

共引文献35

同被引文献36

  • 1胡宏宇,李志慧,曲昭伟,王殿海.基于上下文的交通事件表达与识别[J].吉林大学学报(工学版),2009,39(S2):158-162. 被引量:4
  • 2郁梅,王圣男,蒋刚毅.复杂交通场景中的车辆检测与跟踪新方法[J].光电工程,2005,32(2):67-70. 被引量:23
  • 3汤淑明,王坤峰,李元涛.基于视频的交通事件自动检测技术综述[J].公路交通科技,2006,23(8):116-121. 被引量:25
  • 4陶智敏.基于视频的道路交通事件自动检测技术[J].道路交通与安全,2007,7(3):38-41. 被引量:2
  • 5刘伟,孟小峰,孟卫一.Deep Web数据集成研究综述[J].计算机学报,2007,30(9):1475-1489. 被引量:136
  • 6Wu J, Cui Z, Chen J, et al. A survey on video-based vehicle behavior analysis algorithms[ J]. Joumal of Muhimedia, 2012, 7 (3) : 223 - 230.
  • 7Xin L, Tan T. Ontology-based hierarchical conceptual model for semantic representation of events in dynamic scenes[ C ]//Proceedings of the 14th International Conference on Computer Communications and Networks. Piscataway, NJ, USA: IEEE, 2005 : 57 -64.
  • 8Higgins R P. Automatic event recognition for enhanced situational awareness in UAV video [ C ]//Proceedings of IEEE Military Communications Conference. Piscataway, NJ, USA: IEEE, 2005 : 1 - 6.
  • 9Hummel B, Thiemann W, Lulcheva I. Scene understanding of urban road intersections with description logic [ M ]//Logic and Probability for Scene Interpretation. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Infornaatik, 2008 : 08091.
  • 10Alvarez J M, Gevers T, LeCun Y, et al. Road scene segmentation from a single image [ M]//Lecture Notes in Computer Science: vol. 7578. Berlin, Germany: Springer-Verlag, 2012 : 376 - 389.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部