期刊文献+

应用小波多分辨率理论提取个性特征的研究 被引量:1

Application of wavelet multiresolution theory to extract personality characteristics
下载PDF
导出
摘要 利用小波多分辨率的理论对语音信号进行信号分解,结合其发声特性,分析高低频段对说话人识别的贡献大小,根据识别结果的分析,提取出了可以综合识别时间和识别效率的特征参数。实验结果表明,一层分解后的小波细节系数识别率为94.4%,比原信号MFCC提高7%,而数据个数却比原信号降低了一半,二次分解后的高频段语音依然得到了较高识别率,提取出的较低频信号也可以达到70.8%的识别率。 This paper applies the theory of wavelet multiresolution theory to decomposing the signal. Combining with its voice features, this paper analyses the difference of the contribution of the high and low frequency on the speaker recognition. Experimental results show that the rate of detail coefficients after a layer of decomposition is 94.4%, increased by 7% than the MFCC of the original signal, and the number of the data cuts by half than the original signal. The second dissolved high frequencies voice still achieves higher recognition rate, and the extracted low-frequency signal also can achieve 70.8% recognition rate.
作者 梁慧 曾水平
出处 《计算机工程与应用》 CSCD 2013年第9期120-122,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.51174007)
关键词 说话人识别 小波多分辨率分析 高频区间 分解系数特征 个性差异 speaker recognition multiresolution analysis high frequency band decomposition coefficient individual differences
  • 相关文献

参考文献4

二级参考文献18

  • 1程俊,张璞,戴善荣,易克初.小波变换用于信号突变的检测[J].通信学报,1995,16(3):96-104. 被引量:36
  • 2刘雅琴,裘雪红.应用小波包变换提取说话人识别的特征参数[J].计算机工程与应用,2006,42(9):67-69. 被引量:15
  • 3赵力.语音信号处理[M].北京:机械工业出版社,2008.
  • 4Campbell J P.Speaker recognition:a tutorial[J].Proceedings of the IEEE,1997,85(9):1437-1462.
  • 5Hayakawa S,Itakura F.Text dependent speaker recognition using the information in the higher frequency band[A].Proceedings of the Conference on Acoustic,Speech and Signal Processing[C].Adelaide,SA,Australia,IEEE,1994:19-22.
  • 6Miyajima C,Watanable H,Tokuda K,et al.A new approach to designing a feature extractor in speaker identification based on discriminative feature extraction[J].Speech Communication,2001,35(3):203-218.
  • 7Lu Xugang,Dang Jianwu.An investigation of dependencies between frequency components and speaker characteristics for text independent speaker identification[J].Speech Communication,2008,50:312-322.
  • 8Reynolds D A,Rose R C.Robust text independent speaker identification using Gaussian mixture speaker models[J].IEEE Transactions on Speech and Audio Processing,1995,3(1):72-83.
  • 9Dang J,Honda K.Acoustic characteristics of the piriform fossa in models and humans[J].Acoustical Society of America,1997,101:456-465.
  • 10Kitamura T,Honda K,Takemoto H.Individual variation of the hypopharyngeal cavities and its acoustic effects[J].Acoustical Society of America,2005,26(1):16-26.

共引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部