期刊文献+

一种面向专业搜索引擎的查询推荐算法 被引量:4

Query recommendation algorithm for professional search engines
下载PDF
导出
摘要 根据专业搜索引擎的特点,提出了一种新颖的基于词语共现与HITS算法的查询推荐算法QR-CH(Query Recom-mendation algorithm based on word Co-occurrence and HITS algorithm)。该算法一方面利用HITS算法对基于词语共现筛选出的关联词按语义关联性进行排序,选取排序靠前的关联词作为推荐词,提高了推荐词与原查询词的相关性;另一方面使用HITS算法排序关联文档,从查询结果文档集的角度来判断推荐是否冗余,降低了推荐词的冗余性。该算法将推荐相关的信息存储到知识树中,利用知识树实现查询推荐。实验结果表明QR-CH算法在推荐词的相关性和冗余词的判断方面均优于文献中已有的类似算法。 In the light of the differences between professional and universal search engines, a novel Query Recommendation algorithm based on word Co-occurrence and HITS algorithm(QR-CH) is proposed for professional search engines. To improve the relevance between the recommended words and the initial query, QR-CH utilizes the HITS algorithm to order the candidates which are filtered by word co-occurrence, and then chooses the candidates with high relevance as recommended words. At the same time, the algorithm reduces the redundancy effectively. Whether the recommended word is redundant depends on query results, which are also ordered by the HITS algorithm. QR-CH stores the recommended words in a domain knowledge tree which is used for query recommendation. The results of the experiment show that QR-CH is superior to the existent similar algorithms in both the relevance and the redundancy.
出处 《计算机工程与应用》 CSCD 2013年第9期144-149,共6页 Computer Engineering and Applications
基金 高等学校博士学科点专项科研基金(No.20100181120029)
关键词 查询推荐 词语共现 超链诱导主题搜索(HITS)算法 专业搜索引擎 query recommendation word co-occurrence Hypertext Induced Topic Search (HITS) algorithm professionalsearch engine
  • 相关文献

参考文献16

  • 1Spink A, Jansen B J.A study of web search trends[J/OL]. Webology, 2004, 1 (2) .http://www.webology.ir/2004/v 1 n2/a4.hlml.
  • 2Andre B.A taxonomy of web search[J].SIGIR Forum,2002, 36(2):3-10.
  • 3李亚楠,王斌,李锦涛.搜索引擎查询推荐技术综述[J].中文信息学报,2010,24(6):75-84. 被引量:29
  • 4Beeferman D, Berger A.Agglomerative clustering of a search engine query log[C]//Proc of KDD,2000:407-416.
  • 5Fonseca B M, Golgher P B.Using association rules to dis-cover search engines related queries[C]//Proc of LA-WEB, 2003.
  • 6Dupre G, Mendoza M.Automatic query recommendation using click-through data[J].Professional Practice in Artificial Intel- ligence, 2006,218 : 303-312.
  • 7李亚楠,许晟,王斌.基于加权SimRank的中文查询推荐研究[J].中文信息学报,2010,24(3):3-10. 被引量:15
  • 8李亚楠,王斌.一个中文搜索引擎的查询日志分析[J].数字图书馆论坛,2008(7):1-10. 被引量:4
  • 9Mitra M, Singhal A, Buckley C.Improving automatic query expansion[C]//Proc of SIGIR' 98,1998 : 206-214.
  • 10Kruschwitz U.Exploiting structure for intelligent Web search[C]// Proc of HICSS,2001 : 1356-1364.

二级参考文献104

  • 1吴光远,何丕廉,曹桂宏,聂颂.基于向量空间模型的词共现研究及其在文本分类中的应用[J].计算机应用,2003,23(z1):138-140. 被引量:23
  • 2罗式胜.篇名关键词链特征的统计分析及应用[J].中国图书馆学报,1995,21(1):27-29. 被引量:13
  • 3王继民,彭波.搜索引擎用户点击行为分析[J].情报学报,2006,25(2):154-162. 被引量:45
  • 4崔雷.专题文献高频主题词的共词聚类分析[J].情报理论与实践,1996,19(4):49-51. 被引量:148
  • 5[1]ENGENE A,ERIC B,SUSAN D.Improving Web Ranking by Incorporating User Behavior Information[C]//Preceedings of ACM Conference on Research and Development on information Retrieval (SIGIR),2006.
  • 6[2]AMANDA S,BERNARD J J.A Study of Web Search Trends[J/OL].Webology,2004,1(2),Article 4.[2008-06-04].http://www.weboingy.jr/2004/vln2/a4.html.
  • 7[3]XU Jinxi,CROFT W B.Improving the effectiveness of information retrieval with local context analysis[J].ACM Transactions on Information Systems,2000,18(1).
  • 8[4]HOACHIMS T,GRANKA L,PAN Bing.Accurately Interpreting Click through Data as Implicit Feedback[C]//Preceedings of ACM Conference on Research and Development on Information Retrieval (SIGIR),Salvador,Brazil August 15 19,2005,Salvador,Brazil.2005.
  • 9[5]LIU Yiqun,ZHANG Min,RU Liyun,MA Shaoping.Automatic query Type Identification Based on Click Through Inforrnatinn[C]//Asia Information Retrieval Symposium,AIRS 2006:593-600.
  • 10[7]余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的网络搜索引擎用户行为研究[C]//第三届学生计算语言学研讨会(SWCL2006),2006.

共引文献100

同被引文献43

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部