期刊文献+

基于加权门限谱熵的改进端点检测方法 被引量:1

Improved speech endpoint detection based on weighing threshold spectral entropy
下载PDF
导出
摘要 为了进行有效的语音信号处理,降低语音信号的冗余度,通常采用端点检测技术来提取语音信号中的有效部分。而传统谱熵端点检测算法由于判定门限为固定值,其在低信噪比条件下检测性能急剧下降,提出了一种基于动态加权门限的检测方法,对每个判定的噪音帧的谱熵与无声段噪音谱熵进行加权平均,得到新的噪音谱熵作为更新后的门限值;在判定过程中引入谱减法提高信噪比,进一步降低噪声干扰。仿真实验结果证明,相对于传统谱熵端点检测方法,该方法在低信噪比的条件下仍然能够更为准确地检测到语音的端点。 In order to increase the speech signal' s efficiency and decrease the redundancy of the speech signal, the vahd reformation of speech signal is often extracted by endpoint detection technology. However, the accuracy of traditional spectral entropy endpoint detection is decreased rapidly in low Signal-to-Noise condition. This paper proposes a method which is based on weighing threshold. Every spectral entropy of noise frame will be weighed with the initial noisy spectral entropy. The new weighed spectral entropy will be used as the refreshed threshold. At the same time, the spectral subtraction is used in the deci- sion procedure to boost up the SNR and keep the robustness. The experiment results indicate that the accuracy of the speech end- point detection has been improved in low SNR condition.
作者 冯璐 陈威兵
出处 《计算机工程与应用》 CSCD 2013年第9期207-210,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(No.2008AA8030420B) 湖南省教育厅科研项目(No.12C0483) 湖南省科技计划(No.2011933116) 长沙学院科研项目(No.CDJJ-10010104)
关键词 端点检测 谱减法 谱熵 endpoint detection spectral subtraction spectral entropy
  • 相关文献

参考文献8

二级参考文献106

共引文献135

同被引文献15

  • 1Okumura F,Kubota A,Hatori Y,et al.A study on biometric authentication based on arm sweep action with acceleration[C]//Proceedings of International Symposium on Intelligent Signal Processing and Communications,2006:219-222.
  • 2Matsuo K,Okumura F,Hashimoto M,et al.Arm swing identification method with template update for long term stability[J].Advances in Biometrics,2007,4642:211-221.
  • 3Liu Jiayang,Zhong Lin,Wickramasuriya J,et al.User evaluation of lightweight user authentication with a single tri-axis accelerometer[C]//Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services,2009:15-18.
  • 4Casanova J G,Sanchez A C,Gonzalo B,et al.Authentication in mobile devices through hand gesture recognition[J].International Journal of Information Security,2012,11(2):65-83.
  • 5Casanova J G,Sanchez A C,Gonzalo B,et al.Time series distance measures to analyze in-air signatures to authenticate users on mobile phones[C]//Proceedings of 2011 IEEE International Carnahan Conference on Security Technologies.Barcelona,Spain,2011:1-7.
  • 6Chen Wen,Xia Xiao,Wang Xiaodong.Gesture recognition based on optimized DTW[C]//Proceedings of HHME2011.Beijing,China,2011:333-339.
  • 7Amma C,Gehrig D,Schultz T,et al.Airwriting recognition using wearable motion sensors[C]//Proceedings of First Augmented Human International Conference,Newyork,USA,2010:101-108.
  • 8Park T,Lee J,Hwang I,et al.E-gesture:a ollaborative architecture for energy-efficient gesture recognition with handworn sensorand mobile devices[C]//Proceedings of the nineth ACM Conference on Embedded Networked Sensor Systems,New York,USA,2011:260-273.
  • 9Schl?mer T,Poppinga B,Henze N,et al.Gesture recognition with a wii controller[C]//Proceedings of the second International Conference on Tangible and Embedded Interaction,New York,USA,2008:11-14.
  • 10Keogh E,Selina C,David H,et al.An online algorithm for segmenting time series[C]//Proceedings of 1st IEEE International Conference on Data Mining,San Jose,USA,2001:289-296.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部