期刊文献+

高维共鸣识别——蛋白质比较的新方法 被引量:2

Higher dimensional resonance recognition model—novel method for protein comparison
下载PDF
导出
摘要 在提出的符号序列的高维数字表达以及高维傅里叶变换概念的基础上,提出了蛋白质比较的新方法——高维共鸣识别。将两种蛋白质对应的氨基酸序列转化为向量序列,分别计算它们对应的向量序列的离散傅里叶变换。据此,定义两个蛋白质序列所对应的交叉谱函数,考查交叉谱函数的信噪比,判断两种蛋白质序列的相似性或差异性。计算结果显示它是蛋白质比对的又一个有效方法,是Cosic一维共鸣识别的拓展。 Based on the ideas of suggested vector representation for symbolic sequence and its Fourier transform, the resonance recognition model of higher dimension is presented for protein comparison in this paper. The amino acid sequences, two kinds of protein corresponding to, are numerically encoded, the Fourier transforms of them are computed respectively. So, it can obtain the cross-spectral function for the proteins based on the results of Fourier transform. Using the concept of signal-to-noise ratio, the similarity or difference of the two proteins can be distinguished. Computational results show that the novel method is efficient for protein comparison and it is the extension of Cosic' s resonance recognition model.
出处 《计算机工程与应用》 CSCD 2013年第9期224-228,共5页 Computer Engineering and Applications
关键词 蛋白质比较 高维数字表达 向量序列的傅里叶变换 交叉谱函数 信噪比 高维共鸣识别 protein comparison numerical representation of higher dimension Fourier transform of vector sequence cross-spectralfunction signal to noise ratio resonance recognition model of higher dimension
  • 相关文献

参考文献11

  • 1Cosic I.Macromolecular bioactivity: is it resonant interaction between macromolecules?-theory and applications[J].IEEE Trans on Biomed Eng, 1994,41(12) : 1101-1114.
  • 2Lin K, May A C W, Taylor W R.Amino acid encoding schemes from protein structure alignments: multi-dimensional vectors to describe residue types[J].Theor Biol,2002,216: 361-365.
  • 3Vojisavljevic V, Pirogova E, Davidovic D, et al.A new ap- proach to revealing functional residues from analysis of pro- tein primary structure[C]//31st Annual International Confer-.ence of the IEEE EMBS.Minneapolis,Minnesota,USA : [s.n.], 2009.
  • 4Illingworth C J, Parkes K E, Snell C R, et al.Criteria for con- firming sequence periodicity identified by Fourier transform analysis:application to GCR2,a candidate plant GPCR?[J]. Biophysical Chemistry,2008,133:28-35.
  • 5Wang J, Wang W.New 2-D graphical representation of DNA sequences[J].Biophy Rev and Let, 2006,1 (2) : 143-150.
  • 6Wang J, Wang W.2-D numerical and graphical representationsofprotein[Z].北京:科学出版社,2013.
  • 7Gates M A.Simpler DNA sequence representations[J].Nature, 1985.
  • 8Yau S, Yu C, He R.A protein map and its application[J]. DNA and Cell Biology,2008,27(5) :241-250.
  • 9Grantham R.Amino acid difference formula to help explain protein evolution[J].Science, 1974, 185 : 862-864.
  • 10Yao S,Wang J,Niknejad A,et aI.DNA sequence representa- tion without degeneracy[J].Nucleic Acids Res, 2003,31 ( 12 ) : 3078-3080.

同被引文献44

  • 1Nakashima H,Nishikawa K.Discrimination of intracellular and extracellular proteins using amino acid composition and residuepair frequencies[J].Journal of Molecular Biology,1994,238 (1):54-61.
  • 2Luo R,Feng Z,Liu J.Prediction of protein structural class by amino acid and polypeptide composition[J].European Journal of Biochemistry,2002,269 (17):4219-4225.
  • 3Garg A,Bhasin M,Raghava G P S.Support vector machine-based method for subcellular localization of human proteins using amino acid compositions,their order,and similarity search[J].Journal of Biological Chemistry,2005,280 (15):14427-14432.
  • 4Bu W S,Feng Z P,Zhang Z,et al.Prediction of protein (domain) structural classes based on amino-acid index[J].European Journal of Biochemistry,1999,266 (3):1043-1049.
  • 5Chou K C.Pseudo amino acid composition and its applications in bioinformatics,proteomics and system biology[J].Current Proteomics,2009,6 (4):262-274.
  • 6Feng Z P,Zhang C T.A graphic representation of protein sequence and predicting the subcellular locations of prokaryotic proteins[J].The International Journal of Biochemistry & Cell Biology,2002,34(3):298-307.
  • 7Metfessel B A,Connelly D P,Rich S S,et al.Cross-validation of protein structural class prediction using statistical clustering and neural networks[J].Protein Science,1993,2 (7):1171-1182.
  • 8Chou K C.Prediction of protein subcellular locations by incorporating quasi-sequence-order effect[J].Biochemical and Biophysical Research Communications,2000,278 (2):477-483.
  • 9Chou K C,Cai Y D.Predicting protein structural class by functional domain composition[J].Biochemical and Biophysical Research Communications,2004,321 (4):1007-1009.
  • 10Ashburner M,Ball C A,Blake J A,et al.Gene ontology:tool for the unification of biology[J].Nature Genetics,2000,25 (1):25-29.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部