期刊文献+

基于情感识别方法的推荐系统(英文)

RSER:A Recommender System Based on Emotion Recognition Methods
下载PDF
导出
摘要 随着电子商务的高速发展,推荐系统已成为广大客户选择合意商品的重要工具。目前应用的电子商务推荐方法,依赖于客户的购物素养;而客户在购物中,更重要的影响因素是人的情感。针对这种情况,提出了一种新型的、基于客户情感的推荐系统;给出了该系统的模型、数据结构等。该系统的核心是商品和情感二维叠加空间。实验证明,该系统具有较高的推荐精度和检索速度。 With the growth of E-commerce, the development of recommender systems is helpful for users to select desirable products from all kinds of them. The existing e-commerce recommender approaches are based on a user's preference on music. However, sometimes, it might better meet users' requirement to recommend products according to emotions. In order to deal with them, a novel framework model for emotion-based e-com- merce recommender systems is proposed. The core of the recommender system is the construction of the product vs customer emotion model by two-dimensional overlap spaces, which plays an important role in conveying emo- tions in products. Then the product feature extraction and propose some related matching algorithms for the con- struction of product vs customer emotion model is researched. The system model, data structures and so on are given in our paper. At last, experimental and analytical result shows the proposed emotion-based music recom- mendation achieves higher accuracy and faster retrieval speed.
作者 王征 刘庆强
出处 《四川理工学院学报(自然科学版)》 CAS 2013年第2期42-47,共6页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 教育部人文社会科学研究项目(10YJCZH169) 四川省金融智能与金融工程重点实验室项目(FIFE2010-P05) 西南财经大学课题项目(2010XG068)
关键词 推荐 情感 叠加空间 匹配 recommendation emotion overlay space match
  • 相关文献

参考文献10

  • 1Calvo R A,D Mello S.Affect detection:an interdiscipli- nary review of models,methods,and their applications[J]. IEEE Transactions on Affective Computing,2010,1 (1): 18-37.
  • 2Balahur A, Hermida J M, Montoyo A. Building and exploiting Emoti-Net,a knowledge base for emotion detection based on the Appraisal Theory ModeI[J].IEEE Transactiom on Affective Computing,2012,3 (1):88- 101.
  • 3Koelstm S,Muhl C,Soleymani M, et al.DEAP:A data- base for emotion analysis using physiological signals[J]. IEEE Transactiom on Affective Computing,2012,3 (1): 18-31.
  • 4Soleymani M, Lichtenauer J, Pun, et al. A multimodal database for affect recognition and implicit tagging[J]. IEEE Transactions on Affective Computin_g,2012,3 (1): 42-55.
  • 5Salichs M A,Malfaz M.A new approach to modeling emotions and their use on a Decision-Making system for artificial agents[J].IEEE Transactions on Affective Computing2012,3 (1):56-68.
  • 6Lee-Johnson C P,Camegie D A.Mobile robot navigation modulated by artificial emotions[J]. IEEE Transactions on Systems, Man, and Cybemetics, Part B: Cybernetics, 2010,40(2):469-480.
  • 7Sobol-Shikler T,Robinson P. Classification of complex information: inference of Co-occurring affective states from their expressions in speech[J].IEEE Transactions on Pattern Analysis and Machine /ntelligence,2010.32 (7):1284-1297.
  • 8MetaUinou A,Wollmer M,Katsamanis A,et al.Context- Sensitive learning for enhanced audiovisual emotion classification[J]. IEEE Transactions on Affective Com- puting012,3 (2):184-198.
  • 9Frantzidis C A,Bratsas C,Papadelis C L, et al.Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli[J]. IEEE Transactions on Information Technology in Biomedicine2010,14(3):589-597.
  • 10Shen Liping, Callaghan Victor, Shen Ruimin. Affective e-Leaming in residential and pervasive computing en- vironments [ J ]. Information systems frontiers, 2008,10 (4):461-472.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部