期刊文献+

引入期望速度的交通流中观模型研究 被引量:3

A Traffic Kinetic Model Considering Desired Speed
下载PDF
导出
摘要 本文旨在研究期望速度对速度—密度曲线的影响.通过引入期望速度建立了新的博弈表和相应的交通流中观模型,利用VBA和Matlab混合编程技术开发了相应的计算程序.对于一个期望速度类情况,分析了期望速度相同时不同的道路条件对应的速度—密度曲线,以及相同道路条件下,不同期望速度对应的速度—密度曲线.对于多个期望速度类的情况,研究了多个期望速度的变异系数对车流平均速度的影响,以及慢车比例对车流平均速度的影响.得出结论,驾驶员的期望速度差异是影响车流平均速度的主要因素之一.当密度较小时,交通流处于个体流模式,此时交通流平均速度主要由期望速度差异决定;当密度较大时,交通流处于集体流模式,此时交通流平均速度主要由密度决定. In this paper, the desired speed variable is introduced into the ' table of games' , and a new 'table of games' and corresponding traffic kinetic model are then formulated. The hybrid programming technique of VBA and MATLAB is used to develop the computational engine for the proposed model. The study focuses on the effect of desired speed on the speed-density curve. With one desired speed, the relationship between average speed and density is investigated under different road conditions and desired speeds. With multiple desired speeds, an investigation is carried out on the effect of the coefficient of variation on average speed, and the effect of percentage of low desired speed vehicles on average speed. An important factor influencing average speed is the variation of the desired speed. When density is low, traffic flow is in an individual flow pattern, and the average speed of the traffic flow is determined by the variation of the desired speed. When density is high, traffic flow is in a collective flow pattern, and the average speed is determined by density.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2013年第2期81-89,共9页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金项目(71071024) 湖南省自然科学基金(12JJ2025) 长沙市科技局重点项目(K1106004-11) 道路结构与材料交通行业重点实验室开放基金(kfj100206)
关键词 交通工程 中观模型 博弈表 期望速度 离散动力学 traffic engineering kinetic model table of games desired speed discrete kinetic theory
  • 相关文献

同被引文献30

  • 1荣建,刘世杰,邵长桥,刘江.超车模型在双车道公路仿真系统中的应用研究[J].公路交通科技,2007,24(11):136-139. 被引量:9
  • 2Greenshields B D, Bibbins J R, Channing W S, et al. A study of traffic capacity[C]. Highway Research Board Proceedings. 1935,14:448-477.
  • 3Newell G F. Nonlinear effects in the dynamics of car following[J]. Oper. Res.,1961, 9:209-229.
  • 4Bando M, Hasebe K, Nakayama A, et.al. Dynamical model of traffic congestion and numerical simulation [J]. Phys. Rev. E,1995a,51:1035-1042.
  • 5Dirk H, Benno T. Generalized force model of traffic dynamics[J]. Phys. Rev. E. 1998,58: 133-138.
  • 6Jiang R, Wu Q S,Zhu Z J. Full velocity difference model for a car-follo wing theory[J]. Phys.Rev.E, 2001,64: 017101-1,4.
  • 7Zhao X M,Gao Z Y.The stability analysis of the full velocity and acceleration velocity model[J]. Physica A. 2007, 375:679686.
  • 8Richard C D, Robert H B.Modern control systems(the twelfth edition)[M]:Publishing House of Electronics Industry,2012.
  • 9PRIGOGINE I,HERMAN R.Kinetic Theory of Vehicular Traffic[M].New York:Elsevier Press,1971.
  • 10DELITALA M,TOSIN A.Mathematical Modeling of Vehicular Traffic:A Discrete Kinetic Theory Approach[J].Mathematical Models and Methods in Applied Sciences,2007,17(6):901-932.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部