期刊文献+

基于主成分的SFLABP网络模型在帕金森氏病分类中的应用

Based-on PCA of SFLABP Neural Network Model in Application of Parkinson Disease' s Classification
下载PDF
导出
摘要 针对BP神经网络学习效率低、容易陷入局部最优等缺点,提出了一种基于主成分分析的混合蛙跳算法(Shuffle FrogLeaping Algorithm)优化的BP神经网络模型。使用主成分分析法对高维数据进行特征提取,作为网络输入;采用混合蛙跳算法优化BP神经网络的权系数和阈值,构建基于混合蛙跳算法神经网络的帕金森病分类模型。最后,以UCI中Parkinson数据为例,实验表明,新模型优于传统的BP网络。 For the shortcomings of BP neural network which is low learning efficiency and is easy to trap into local optimum, ac- cording to these problems, a new BP neural network model optimized by Shuffle Frog Leaping Algorithm based on Principal Component Analysis is proposed. Using Principle Component Analysis to extract the features of high dimensional data, the input variables; the bias of BP neural network are optimized by Shuffle Frog Leaping Algorithm and then build the classification model of Parkinson's disease based on SFLABP neural network. At last, taking the data of Parkinson from UCI for example, the experi- ment result demonstrates the new model is better than the traditional BP neural network.
作者 张志豪 唐德玉 ZHANG Zhi-hao,TANG De-yu (College of Medical Information Engineering, Guangdong Pharmaceutical University, ZhongShan 528458,China)
出处 《电脑知识与技术》 2013年第2期861-865,共5页 Computer Knowledge and Technology
关键词 主成分分析 混合蛙跳算法 BP神经网络 帕金森氏病 分类 principal component analysis (PCA) shuffle frog leaping algorithm (SFLA) BP neural network Parkinson classifica-tion
  • 相关文献

参考文献13

二级参考文献48

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部