期刊文献+

改进的最大功率跟踪算法在变速风力发电系统中的应用 被引量:8

Improved maximum power point tracking algorithms used in variable-speed wind-power generation system
下载PDF
导出
摘要 为最大限度地捕获风能,最大功率跟踪研究一直是风电技术行业关注的热点问题。本文从变速风力发电机组空气动力学模型入手,在最大功率跟踪算法———爬山搜索法分析的基础之上,引入模拟退火算法中概率函数的定义式,用于定义自适应步长,从而使跟踪开始时具有较好的动态特性和在跟踪结束时具有较好的稳态特性。在Matlab环境下,建立了变速风力发电系统模型,仿真分析了风速变化对输出功率的影响,改进的跟踪算法能够使输出功率最终稳定在新的工作点上,且具有较好的稳态特性和动态特性。 Based on the aerodynamic model of variable speed wind turbine and hill-climbing search, one of the Maximum Power Point Tracking (MPPT) algorithms, definition formula of probability function used in simulated annealing algorithm is referenced in the paper. It is used to define the adaptive step. The purposes are that dynamic characteristics is fine at beginning of searching stage, and steady state characteristics is more stable at the end of searching stage. The model of variable speed wind turbine and the effects of output power when wind speed is chan- ging are realized in Matlab. The conclusion is that improved algorithm can make output power stabilized at new state, and dynamic characteristics and steady state characteristics are stratifying.
出处 《电工电能新技术》 CSCD 北大核心 2013年第2期102-106,共5页 Advanced Technology of Electrical Engineering and Energy
基金 国家科技计划(2007BAA12B05) 中央高校基本科研业务费创新项目(SWJTU09CX031) 中央高校基本科研业务费专题研究(SWJTU09ZT12)资助项目
关键词 最大功率跟踪算法 变速风力发电 模拟退火算法 爬山搜索法 Maximum Power Point Tracking (MPPT) variable-speed wind-power generation simulated annealingalgorithm hill-climbing search algorithm
  • 相关文献

参考文献8

  • 1Li Hu, Shi K L, Mc Larenp. Neural network based sensor less maximum wind energy capture with compensated pow- er coefficient [A]. Conference Record of the 39th IEEE Industry Applications Conference [ C ]. Seattle, WA, USA, 2004. 2600-2608.
  • 2胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化,2005,29(24):32-38. 被引量:105
  • 3蒋禹,高雪松.双馈型变速恒频风力发电系统最大风能追踪控制研究[J].电网技术,2008,32(S2):260-263. 被引量:6
  • 4Mutschler P, Meinhardt M. Competitive hysteresis con- trollers-a control concept for inverters having oscillating DC-and AC-side state variables [ J]. IEE Proceedings on Electric Power Application, 1998, 145 (6) : 569-576.
  • 5Nan Xiaoqiang, Li Qunzhan, Yu Junxiang, et al. Wind speed forecasting based on combination forecasting model [ A]. 2010 International Conference of Information Sci- ence and Management [ C]. Xi' an, China, 2010. 185- 189.
  • 6Simoes M G, Bose B K, Spiegel R J. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system [ J]. IEEE Trans. on Power Electron- ics, 1997, 12(I): 87-95.
  • 7Stavrakakis G S, Kariniotakis G N. A general simulation algorithm for the accurate assessment of island diesel-wind turbines system interaction [ J]. IEEE Transactions on Energy Convemion, 1995, 10(3):553-577.
  • 8闫永勤,乔明,林飞,胡广艳,郑琼林.变速恒频风力发电系统最大风能跟踪控制的研究[J].电气技术,2006,7(11):14-17. 被引量:12

二级参考文献18

共引文献119

同被引文献59

  • 1夏长亮,王明超.基于RBF神经网络的开关磁阻电机单神经元PID控制[J].中国电机工程学报,2005,25(15):161-165. 被引量:52
  • 2胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化,2005,29(24):32-38. 被引量:105
  • 3唐西胜,齐智平.独立光伏系统中超级电容器蓄电池有源混合储能方案的研究[J].电工电能新技术,2006,25(3):37-41. 被引量:59
  • 4TANG C, SOONG W L, FREERE P, et al. Dynamic wind turbine output power reduction under varying wind speed conditions due to inertia[J]. Wind Energy, 2013, 16(4): 561-573.
  • 5LI Hui, SHI K L, MCLAREN P G. Neural network based sensorless maximum wind energy capture with compensated power coefficient[C]//Conference Record of the 39th IEEE Industry Applications Conference, Seattle, WA, USA, 2004: 2600-2608.
  • 6CONROY J F, WATSON R. Low-voltage ride-through of a full converter wind turbine with permanent magnet generator[J]. IET Renewable Power Generation, 2007, 1(3): 182-189.
  • 7SIMOES M G, BOSE B K, SPIEGEL R J. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system[J]. IEEE Transactions on Power Electronics, 1997, 12(1): 87-95.
  • 8Cirrincione M, Pucci M, Vitale G. Neural MPPT of vari- able-pitch wind generators with induction machines in a wide wind speed range [ J]. IEEE Transactions on Indus- try Applications, 2013, 49 (2) : 942-953.
  • 9Jafarnejadsani H, Pieper J, Ehlers J. Adaptive control of a variable-speed variable-pitch wind turbine using RBF neural network [ A ]. 2012 IEEE Electrical Power and Energy Conference (EPEC) [C]. 2012. 216-222.
  • 10杨剑峰(YangJianfeng).蚁群算法及其应用研究[D].杭州:浙江大学,2007.

引证文献8

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部