2ROBERSON R E. Synthesis of a nonlinear dynamic vibration ab- sorber [ J]. Journal of the Franklin Institute, 1952, 254 ( 3 ) : 205 - 220.
3KING M E, VAKAKIS A F. Eflergy -based formulation for computing nonlinear normal modes in undamped continuous systems [J]. ASME Transactions Journal of Vibration Acoustic.% 1994, 116 : 332 -340.
4VAKAKIS A F, MANEVITCH L 1, GENDELMAN O, et al. Dynamics of linear discrete systems connected to local, essen- tiaUy nonlinear attachments [ J ]. Journal of Sound and Vibration, 2003, 264(3) : 559 -577.
5DUFFING G. Erzwungene schwvingungert bei verandedicher eigen- fiequenz und ihre technische bedeutung [M]. F Vieweg & sohn, 1918.
6RAUSCHER M. Steady oscillations of systems with non - linear and unsymmetrical elasticity [ D ]. Massachusetts Institute of Technol- ogy, 1937.
7KOVACIC i, BRENNAN M J. The dufflng equation: nonlinear os- cillators and their behaviour [ M]. Wiley, 2011.
8AVRAMOV K V, MIKHLIN Y V. Snap - through trdss as an ab- sorber of forced oscillations [J]. Journal of Sound and Vibra- tion. 2006, 290(3) : 705 -722.
9K1PER A. Fourier series coefficients for powers of the jacobian el- liptic functions [ J]. Mathematics of Computation, 1984:247 - 259.