期刊文献+

索-达芬振子系统的非线性模态分析

下载PDF
导出
摘要 非线性模态常被用来进行连接达芬振子的系统动力分析。本文讨论了在谐波激励下,索-达芬振子系统的非线性模态。借助伽辽金法和Rauscher法得到非线性模态的解析解。采用该非线性模态解析方法对一个索-达芬振子系统结构进行分析,并将分析结果与数值模拟结果进行比较,验证系统非线性模态的存在性。
作者 徐羿 陈勇
出处 《低温建筑技术》 2013年第4期53-55,共3页 Low Temperature Architecture Technology
  • 相关文献

参考文献9

  • 1FRAHM H. Vibrations of bodies[ P].
  • 2ROBERSON R E. Synthesis of a nonlinear dynamic vibration ab- sorber [ J]. Journal of the Franklin Institute, 1952, 254 ( 3 ) : 205 - 220.
  • 3KING M E, VAKAKIS A F. Eflergy -based formulation for computing nonlinear normal modes in undamped continuous systems [J]. ASME Transactions Journal of Vibration Acoustic.% 1994, 116 : 332 -340.
  • 4VAKAKIS A F, MANEVITCH L 1, GENDELMAN O, et al. Dynamics of linear discrete systems connected to local, essen- tiaUy nonlinear attachments [ J ]. Journal of Sound and Vibration, 2003, 264(3) : 559 -577.
  • 5DUFFING G. Erzwungene schwvingungert bei verandedicher eigen- fiequenz und ihre technische bedeutung [M]. F Vieweg & sohn, 1918.
  • 6RAUSCHER M. Steady oscillations of systems with non - linear and unsymmetrical elasticity [ D ]. Massachusetts Institute of Technol- ogy, 1937.
  • 7KOVACIC i, BRENNAN M J. The dufflng equation: nonlinear os- cillators and their behaviour [ M]. Wiley, 2011.
  • 8AVRAMOV K V, MIKHLIN Y V. Snap - through trdss as an ab- sorber of forced oscillations [J]. Journal of Sound and Vibra- tion. 2006, 290(3) : 705 -722.
  • 9K1PER A. Fourier series coefficients for powers of the jacobian el- liptic functions [ J]. Mathematics of Computation, 1984:247 - 259.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部