期刊文献+

一种改进的隐含相似性光学和SAR图像配准算法 被引量:4

Optical and SAR Image Registration Via Improving Implicit Similarity
下载PDF
导出
摘要 光学和SAR(synthetic aperture radar)图像信息的互补性和特征表现的差异性使得两者的配准成为目前多源遥感图像处理的研究重点.隐含相似性配准从图像间存在结构上的相似性出发,将传统复杂的特征匹配过程简化为特征点集的迁移和仅需在单幅图像上对配准参数进行迭代搜索的过程,为光学和SAR图像配准提供新的思路.基于上述配准思想,研究用Canny算子改进特征点集提取过程,引入联合马尔可夫模型提高SAR图像去噪质量,以改进后的量子粒子群算法优化配准参数搜索过程,最终实现光学和SAR图像的配准.经实验证明,改进后的隐含相似性光学和SAR图像配准算法能达到像素级甚至亚像素级的配准精度. Optical and synthetic aperture radar (SAR) image registration has become a research focus in the area of multisensory image processing for their information complementarity and feature difference. Based on the structural similarity between images, registration via implicit similarity simplifies the traditional feature matching process as a migration of the feature points and the iterative search of registration parameters on a single image. This method provides a new idea for optical and SAR image registration. As a result, the Canny operator is adopted to modify extraction process of feature points. The joint Markov model (JMM) is employed to improve denoising quality of SAR image. The search process of registration parameters is optimized with the modified quantum particle swarm optimization (QPSO) algorithm, and the optical and SAR image registration is finally realized. The experiment proves that the improved implicit similarity algorithm on optical and SAR image registration can reach a high accuracy of pixel level or even sub-pixel level.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期600-606,共7页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(41171327) 国家"九七三"基础研究发展计划(2012CB719903) 上海市自然科学基金(11ZR1439000)
关键词 隐含相似性 图像配准 SAR去噪 联合马尔可夫模型 量子粒子群算法 implicit similarity image registration SAR denoising joint Markov model (JMM) quantum particle swarm optimization (QPSO)
  • 相关文献

参考文献13

  • 1李孟君.基于隐含相似性的光学和SAR图像配准研究[D].长沙:国防科技大学电子科学与工程学院,2008.
  • 2张俊,柳健.SAR图像斑点噪声的小波软门限滤除算法[J].测绘学报,1998,27(2):119-124. 被引量:35
  • 3李乔亮.图像配准若干理论及应用研究[D].武汉:华中科技大学图像识别与人工智能研究所,2009.
  • 4Kim J, Fessler J A. Intensity-based image registration using robust correlation coefficients [J]. IEEE Transactions on Medical Imaging, 2004, 23(11): 1430.
  • 5FAN Guoliang, XIA Xianggen. Wavelet-based statistical image processing using hidden Markov tree model [C]// 2000 Conference on Information Science and Systems. Princeton: Princeton University, 2000.
  • 6刘国平,徐钦龙.粒子群算法及其与遗传算法的比较[J].中南大学学报(自然科学版),2003,34(z1):328-330. 被引量:8
  • 7贾伟洁.SAR影像与光学影像配准研究[D].青岛:山东科技大学测绘科学与工程学院,2010.
  • 8刘琼.智能优化算法及其应用研究[D].无锡:江南大学信息学院,2011.
  • 9Brown L G. A survey of image registration techniques [J]. ACM Computing Surveys, 1992, 24 (4): 326.
  • 10Christmas W J, Kittler J. Structural matching in computer vision using probabilistic relaxation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8) : 749.

二级参考文献21

  • 1[1]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C]. Nagoya:IEEE Service Center, 1995:39-43.
  • 2[2]Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks (Perth, Australia)[M]. Piscataway: IEEE Service Center, 1995:1942 - 1948.
  • 3[3]
  • 4[5]Fundamentals of Particle Swarm Optimization Techniques[1BOL]. http://homepage2. nifty. com/ fukuyama-yoshikazu/ECTutorial(Chap5 %20Found%20of%20PSO). pdf.
  • 5[7]Eberhart R, Shi Y. Comparison between genetic algorithms and particle swarm optimization[A]. Porto V W, Saravanan N,Waagen D, et al, Eds. Evolutionary Programming Ⅶ: Proc Annual Conferece on Evolutionary Programming[C]. Berlin:Springer-Verlag, 1998.
  • 6[9]Jacques R, Jakob S, Vesterstrm. A Diversity-Guided Particle Swarm Optimizer-the ARPSO[EB OL]. http://www. evalife.dk/publications/JR_EVALife_TechRep_2002 - 02. pdf, EVALife Technical Report no.
  • 7Shi Zhenghuo,Proc IGARSS’94,1994年,2219页
  • 8OLIVER C J,QUEGAN S.Understanding Synthetic Aperture Radar Images[M].London:Artech House Inc,1998.
  • 9LEE J S,JURKEVICH I.Speckle Filtering of Synthetic Aperture Radar Images:a Review[J].Remote Sensing Reviews,1994(8):313-340.
  • 10LEE J S.Speckle Analysis and Smoothing of Synthetic Radar Images[J].ComputerGraphics and Image Processing,1981(17):24-32.

共引文献68

同被引文献37

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2FAN Bin, HUO Chunlei, PAN Chunhong, et al. Registrationof optical and SAR satellite images by exploring the spatial relationship of the improved SIFT[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 657.
  • 3Siddique M A, Sarfraz M S, Bornemann D, et al. Automatic registration of SAR and optical images based on mutual information assisted Monte Carlo[C]//Geoscience and Remote Sensing Symposium (IGARSS). Munich: IEEE, 2012: 1813- 1816.
  • 4Merkle N, Muller R, Schwind P, et al. A new approach for optical and sar satellite image registration[C]// ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Munich: ISPRS, 2015: 119-126.
  • 5Suri S, Reinartz P. Mutual-information-based registration of TerraSAR-X and IKONOS imagery in urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (2) : 939.
  • 6Inglada J. Similarity measures for multisensor remote sensing images [ C]// IEEE International Geoscience and Remote Sensing Symposium. Toronto: IEEE, 2002: 104-106.
  • 7Goshtasby A, Stockman G C, Page C V. A region-based approach to digital image registration with subpixel accuracy [J]. Geoscience and Remote Sensing, 1986, 24(3): 390.
  • 8WANG Zhenhua, ZHANG Junping, ZHANG Ye, et al. Automatic registration of sar and optical image based on multi- features and multi-constraints[C]// International Geoscience And Remote Sensing Symposium. Honolulu: IEEE, 2010: 1019-1022.
  • 9Keller Y, Averhuch A. Implicit similarity: a new approach to multi-sensor image registration[C]// Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison: IEEE, 2003: 1-6.
  • 10Keller Y, Averbuch A. Multisensor image registration via implicit similarity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (5): 794.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部