期刊文献+

基于小波多分辨率分析的风力发电机的故障特征提取与识别 被引量:2

Extraction and Recognition of Wind Turbines Based on Wavelet Analysis
下载PDF
导出
摘要 利用小波多分辨率分析的方法对风力发电机振动信号进行分析,并运用小波变换对测得的信号进行处理,达到对风力发电机组故障的诊断识别。将提取的振动信号映射到小波基函数上,经平移和伸缩具有正交性的小波函数,然后再经小波变换归一化得到小波分解序列的幅值,以此作为诊断识别的特征值,实现了在多尺度下特征信息的提取与故障识别,说明该方法行之有效。 The signal of the vibration on wind turbine can be preprocessed with the wavelet multi-resolution analysis, and the signal is processed by wavelet transform, the fault of the wind turbine diagnosis can be identified. The extraction of the vibra-tion signal is cast upon a set of basic orthogonal functions from a wavelet by extending, and then a set of wavelet decomposition sequences amplitude is got by the translation and scale, and it is used as characteristic parameter for diagnosis and fauh recog-nition, and it shows the multi-scale characteristic information for extraction and recognition of fault information. It is found that this method is effective.
出处 《机械研究与应用》 2013年第2期69-70,73,共3页 Mechanical Research & Application
关键词 小波分析 信号处理 故障诊断 wavelet analysis signal processing fault diagnosis
  • 相关文献

参考文献1

  • 1Hong H B, Liang M. Separation of fault features from a single- channel mechanical signal mixture using wavelet decomposition [ J ]. Signal process , 2007,21 (5) :2025-2040.

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部