期刊文献+

变体飞行器LPV建模与鲁棒增益调度控制 被引量:22

LPV Modeling and Robust Gain Scheduling Control of Morphing Aircraft
下载PDF
导出
摘要 以可变翼展的变体飞行器为对象,研究了一类变体飞行器的建模与控制问题。分析了飞行器纵向气动参数与翼展变形的关系,构建了气动参数函数。用Jacobian线性化方法,建立了飞行器的线性变参数(Linear pa-rameter varying,LPV)模型,分析了变体过程中飞行器特征的变化。为保证变体过程的稳定,采用鲁棒增益调度控制方法设计了全局控制器,其设计条件具有线性矩阵不等式(Linear matrix inequality,LMI)的形式。对采用所设计控制器的变体飞行器进行了仿真验证。结果表明:翼展变形对飞行器气动参数有明确的影响,能够直接改变飞行器的系统特征;设计的鲁棒增益调度控制器能实现预期的运动过程,并保证变体过程的全局稳定。 The modeling and control on a class of variable-span morphing aircraft are studied. The longitudinal aerodynamic parameters of morphing aircraft are analyzed corresponding to the span variation to construct aerodynamic parameter functions. The linear parameter varying (LPV) model of morphing aircraft is obtained via Jacobian linearization approach. The change of the aircraftrs eigenvalues while morphing is discussed. A robust gain scheduling control methodology, with linear matrix inequality (LMI) form is developed, to guarantee the stability of the aircraft while morphing. A numerical simulation of morphing aircraft is demonstrated with the controller synthesis. The results show that, the span variation can affect the aerodynamic parameters of morphing aircraft obviously, which directly changes the aircraft's characteristics. The robust gain scheduling controller can accomplish the target motion of morphing aircraft with a guarantee of global stability while morphing.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第2期202-208,共7页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(91016017)资助项目
关键词 变体飞行器 气动参数函数 线性变参数 鲁棒增益调度 线性矩阵不等式 morphing aircraft aerodynamic parameter function linear parameter varying(LPV) robust gain scheduling linear matrix inequality(LMI)
  • 相关文献

参考文献19

  • 1陆宇平,何真.变体飞行器控制系统综述[J].航空学报,2009,30(10):1906-1911. 被引量:41
  • 2Rodriguez R A. Morphing aircraft technology survey [C]//45th AIAA Aerospace Sciences Meeting. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2007: 15064-15079.
  • 3Barbarino S, Bilgen O, Ajaj M R, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9):823-877.
  • 4Majji M, Rediniotis K O, Junkins L J. Design of a morphing wing: modeling and experiments [C] ff 2007 A1AA Atmospheric Flight Mechanics Conference. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2007: 124- 132.
  • 5Bowman J, Sanders B, Cannon B, et al. Development of next generation morphing aircraft structures [C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2007: 349- 358.
  • 6Grant T D, Mujahid A, Rick L. Flight dynamics of a morphing aircraft utilizing independent multiple-joint wing sweep[C]//2006 Atmospheric Flight Mechanics Conference. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2006: 1111-1125.
  • 7杜厦,昂海松.变体平尾翼型气动外形设计方法[J].南京航空航天大学学报,2012,44(6):780-785. 被引量:5
  • 8吴俊,陆宇平.变形翼的分布式协同控制方案[J].南京航空航天大学学报,2011,43(4):515-520. 被引量:2
  • 9姚克明,王小兰,吴俊,陆宇平,罗德林.STABILITY ANALYSIS AND COOPERATIVE CONTROL OF DISTRIBUTED MULTI-AGENT SYSTEM WITH SAMPLED COMMUNICATION[J].Transactions of Nanjing University of Aeronautics and Astronautics,2012,29(4):373-378. 被引量:1
  • 10Hubbard J J. Dynamic shape control of a morphing airfoil using spatially distributed transducers [J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3) : 612-616.

二级参考文献82

  • 1杨士斌,徐敏.智能蒙皮飞行器的飞行控制研究[J].飞行力学,2007,25(1):39-42. 被引量:10
  • 2Rodriguez A R. Morphing aircraft technology survey[R].AIAA- 2007- 1258, 2007.
  • 3Akhilesh K J, Jayanth N K. Morphing aircraft concepts, classifications, and challenges[C]//Proceedings of SHE-Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. Bellingham: SHE, 2004, 5388: 213-224.
  • 4Adam M W, Ephrahim G. Optimization of perching maneuvers through vehicle morphing[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4) : 815 -823.
  • 5David A N, Justin F, Daniel I. Development of a mor phing aircraft model for wind tunnel experimentation[R]. AIAA-2006-2141 , 2006.
  • 6Marmier P, Wereley N M. Morphing wings of a small scale UAV using inflatable actuators for sweep control [R]. AIAA- 2003-1802, 2003.
  • 7David L R, Raymond C M, Green L L. Flight control using distributed shape-change effector arrays[R]. AIAA- 2000-1560, 2000.
  • 8William W G. Development of a mission adaptive wing system for a tactical aircraft[R]. AIAA-1980-1886, 1980.
  • 9Fred A. Shape control of an adaptive wing for transonic drag reduction[C]// Proceedings of SPIE--Smart Struc tures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies. Bellingham: SHE, 1995, 2447:45- 55.
  • 10James J J, Brian S, Terrence J, et al. Optimal actuator location within a morphiag wing scissor mechanism configuration[C]// Proceedings of SPIE-Smart Structures and Materials 2006: Modeling, Signal Processing, and Control. Bellingham: SHE, 2006, 6166: 616603-1 616603-12.

共引文献51

同被引文献184

引证文献22

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部